# Europium-doped Cerium Oxide Nanotubes as a potential probe for bioimaging and optical sensors

Leonardo Ojeda Hernandez, Kayla Brownell, Joseph Chouinard and Jeffery L. Coffer, Ph.D. Texas Christian University

**Department of Chemistry and Biochemistry** 

### Introduction

The development of cerium oxide ( $CeO_2$ ) nanomaterials is rapidly advancing, driven by their wide range of applications in catalytic converters, solid oxide fuel cells, and biological sensors. Considering this, doping CeO<sub>2</sub> with rare earth elements such as Europium (Eu<sup>3+</sup>) not only enhances its catalytic properties but also adds visible fluorescence to the list<sup>(1)</sup>. To explore the variability of this effect, Eu<sup>3+</sup> doped CeO<sub>2</sub> nanotubes were synthesized and carefully analyzed by varying the Eu<sup>3+</sup> concentration to investigate their optical properties, crystallinity, and morphology. Current research is focused on evaluating the potential of these doped CeO<sub>2</sub> nanotubes as probes for bioimaging and optical sensors.

## II. Experimental **A. Synthesis of the EuCeO**<sub>2</sub> Nanotubes





Fig 1. (A) SEM image of ZnO NWs on fluorine-doped tin oxide (FTO) substrate; scale bar 100 nm (B) SEM image cross-section of ZnO NWs on FTO substrate. Scale bar 1 um (C-D) Histrograms refer to length and diameter size. Growth of ZnO NWs at 95°C.



Fig 2. (A) Sketch of the cycling deposition method of the doped EuCeO<sub>2</sub> using the spin coater (B) Sketch of the sample before and after etching.





Fig 3. (A) Sketch of the EuCeO<sub>2</sub> NTs. (B) SEM image of the EuCeO2 NTs on FTO 5 % EU<sup>+3</sup>. Scale bar 100 nm (C) TEM image of the  $EuCeO_2$  NTs 5 %  $Eu^{+3}$ . Scale bar 50 nm





Fig 4. (A-C) TEM image of the EuCeO<sub>2</sub> NTs 5, 10, 15 % of Eu<sup>+3</sup>. (D) Energy Dispersive X-ray (EDX) Elemental Analysis at 5, 10, 15% of Eu<sup>+3</sup>. (E-F) Histograms of Wall Thickness of EuCeO<sub>2</sub> NTs 5% and 15%.













Fig 6. (A) Photoluminescence (PL) spectra of the EuCeO<sub>2</sub> NTs at 5,10,15 % of Eu<sup>+3</sup>. 500 ms acquisition time (B) Energy diagram of Eu. Emission and fluorescence



### **IV.** Conclusions and Future Work

- Observe this material in the confocal microscope
- Confocal microscope.
- intensity
- emphasize its study.

#### V. References

- oxide nanomaterials. Nanoscale Adv., 2021,3, 3563-3572
- **Cerium Oxide Nanotubes.** To be published

#### VI. Acknowledgments

TCU Department of Chemistry and Biochemistry

**Fig 7.** XRD Spectra of EuCeO<sub>2</sub> NTs at different concentrations of Eu<sup>+3</sup>. Run by Maegyn Grubbs

• Add cells to the material to watch the interface interaction between them in SEM and Increase the number of cycles to get a thicker wall and probably enhance the PL • The EuCeO<sub>2</sub> NTs at 10% of Eu<sup>+3</sup> in terms of PL intensity and asymmetry are relevant to

Anne D'Achille, Robert Wallace, Jeffery Coffer. Morphology-dependent fluorescence of europium-doped cerium 2. Roberto Gonzalez-Rodriguez, Jeffery Coffer, Jingbiao Cui. Fabrication and characterization of 1D MAPbl<sub>3</sub> in