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Background
• Mathematical modeling of viral kinetics can be used to
gain further insight into the viral replication cycle and
virus-host interactions.

• While there is a basic viral kinetics model, several ex-
tensions have been proposed to more realistically sim-
ulate different aspects of the viral replication cycle (ex:
addition of the immune response, symptoms, drug re-
sistance, etc.).

• Experimental studies measuring viral kinetics in single
cells have shown that the viral production rate within
a host varies over time, unlike the typical assumption
of continuous production.

• We identify a model to describe time-varying viral
production, then use the model to incorporate time-
dependent viral production in a viral kinetics model
using an integro-differential equation.

Modeling viral production

• A recent study examined the kinetics of vesicular stom-
atitis virus production in single BHK cells, Timm and Yin
(2012) Virology.

• The most accurate time course for viral production was
determined by fitting potential distributions to cumulative
viral production by minimizing the sum of squared residuals
(SSR).
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• Then, each distribution’s Akaike Information Criterion
(AIC) score was evaluated and compared to identify the
best fit for each cell,
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Best-fit Curves

Results

• The log-normal probability distribution had the lowest
AIC score for the majority of the cells (7 cells) and was
thus selected as the best-fit distribution.

• The normal distribution was the best-fit distribution for 3
cells while the Gompertz distribution was the most ideal for
2 cells.

Time-adjusted Model

The distribution that best described time-dependent viral
replication was incorporated into a standard constant pro-
duction model of viral kinetics. The set of mathematical
equations that describe the model are shown below. The to-
tal amount of virus produced by one cell during an infection
will be represented by V , which is the infectious viral titer as
detected by plaque assays. We modeled V with an integral
equation that incorporates the probability distribution func-
tion for production found in the first part of this project. The
integro-differential equations for the model are as follows,
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Constant production

Constant viral production simulations of target cells (top),
infected cells (center) and viral titer (bottom).

Constant production simulation metrics:
Metric Value
Time of viral peak (hours) 33.83
Viral peak value (particles) 5.53× 103

Upslope (particles/hour) 3.80× 101

Downslope (particles/hour) −8.46× 101

AUC (particles × hours) 4.71× 104

Time-varying production

Time-dependent viral production simulations of target cells
(top), infected cells (center), and viral titer (bottom)

Log-normal production simulation metrics
Metric Value
Time of viral peak (hours) 41.84
Viral peak value (particles) 5.25× 105

Upslope (particles/hour) 1.95× 104

Downslope (particles/hour) −4.96× 103

AUC (particles × hours) 3.12× 106

Dependence of viral load on distri-

bution parameters

The following graphs demonstrate how a variety of graph
metrics change with the parameters of the log-normal distri-
bution. Mu represents the mean while sigma is the standard
deviation of the distribution.

Conclusions

Overall, the log-normal distribution provides the best fit for
most of the cells, and the time-varying production metrics
have more extreme values compared to constant production.


