FTIR Spectroscopy of Cyclic TiC₃ in Solid Ar

R.E. Kinzer, Jr., C.M.L. Rittby, W.R.M. Graham

Department of Physics and Astronomy

Abstract

The FTIR (Fourier transform infrared) spectrum of TiC_3 was observed by trapping the vapor produced during dual Nd:YAG laser ablation of Ti and C rods in a solid Ar at ~10 K. Measurements of frequencies and 13 C isotopic shifts have enabled the identification of the fan-like $(C_{2\nu})$ isomer of TiC_3 with vibrational fundamentals $v_3(a_1) = 624.3$ and $v_5(b_2) = 1484.2$ cm⁻¹. A third fundamental $v_4(b_1)$, has been tentatively identified at 573.8 cm⁻¹. The results are in good agreement with the predictions of DFT (density functional theory) calculations at the B3LYP/6-311G(3*df*, 3*pd*) level. The observed $C_{2\nu}$ structure and observed v_3 metal-carbon stretching mode are also consistent with earlier results from photoelectron spectroscopy. Small molecules composed of a transition metal attached to carbon chains (such as TiC_3) are of interest because they may serve as fundamental building blocks of larger 'metcar' structures; they also have the potential to be observed in interstellar space and circumstellar shells.

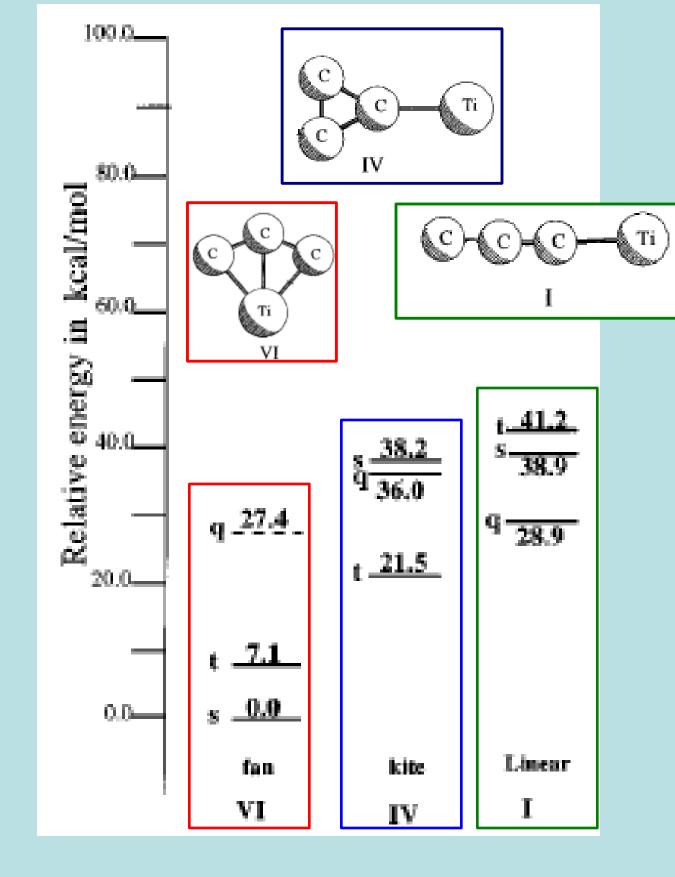
Background

Metallocarbohedrenes

- Metallocarbohedrenes, such as Ti₈C₁₂, are very stable, closed structures containing carbon and metal atoms. An example is shown at right, in which C and Ti are represented by white and black spheres, respectively.
- Smaller 'metcar' structures such as TiC₂ or TiC₃ may be possible building blocks for larger metcars.

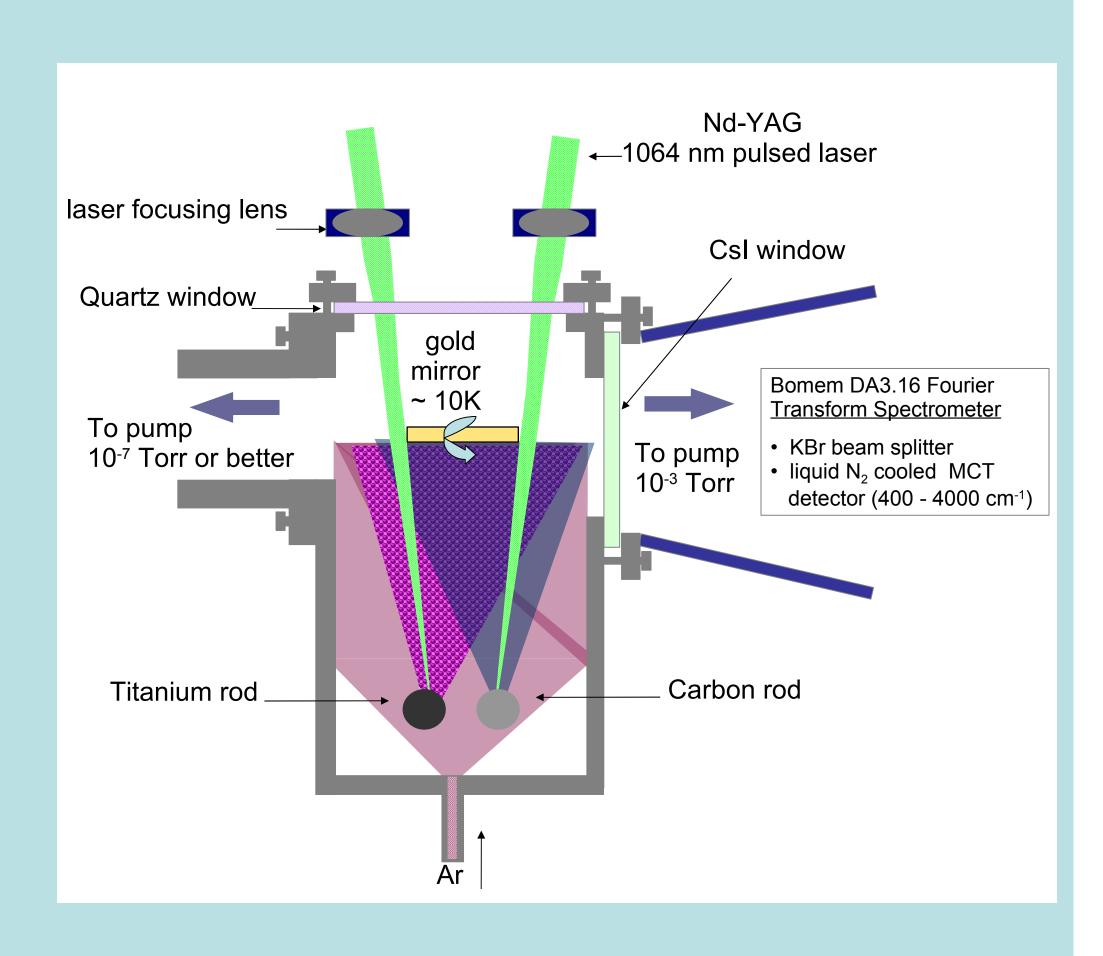
Astrophysical

- Carbon chains have been detected in stars. Additionally, spectral features from molecules containing transition metals have also been detected in stars, particularly M-type stars. Therefore, it is feasible that 'metcars' may be found in stars.
- Experimental determination of 'metcar' spectra is necessary before these molecules can be found in space.


<u>Experimental</u>

- Wang, et al. (1997) observed some vibrational modes for TiC_n , n = 2-5 using photoelectron spectroscopy (PES). Their observations are displayed in the table at right.
- Ring-like structures were proposed for these molecules based on comparison to previous LaC_n and YC_n studies.
- The uncertainty (30 60 cm⁻¹) of their results is large and makes this data unsuitable for astrophysical detection of these molecules.

Theoretical

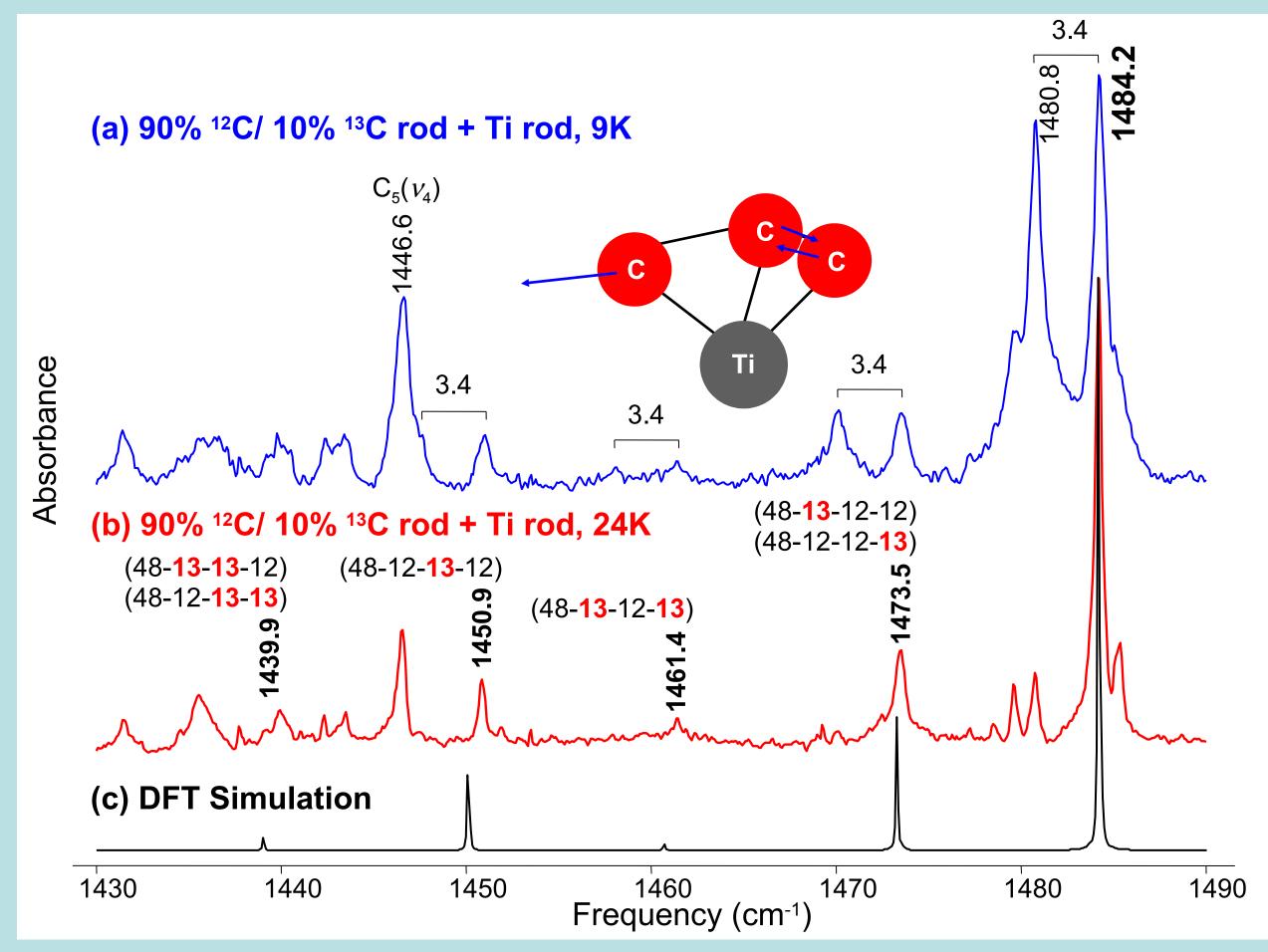

- Sumathi and Hendrickx (1998) published DFT calculations at the B3LYP level for several isomers (structures) of TiC_n , n = 2 4.
- Vibrational frequencies and electronic states were calculated for all isomers considered. The three most energetically favored structures of TiC₃ are shown at right.
- The energy level diagram indicates that the "fan" (VI) structure is energetically favored over the "kite" (IV) and linear (I) structures.

TiC ₂	560 ± 50 cm ⁻¹
TiC ₃	650 ± 30 cm ⁻¹
TiC ₄	440 ± 40 cm ⁻¹
TiC ₅	240 ± 60 cm ⁻¹

Experimental Procedures

- Two Nd:YAG lasers ablate the surfaces of Ti and C rods. Molecules formed in the resulting vapor are trapped in an Ar matrix on the surface of the gold mirror (see figure at right).
- The mirror is rotated towards the spectrometer and an absorption spectrum is taken.
- Annealing the sample sharpens spectral lines, diminishes secondary trapping sites, and creates larger molecules from smaller ones.
- Identification of a molecule *requires* observing the isotopic shifts produced when a ¹³C is substituted for a ¹²C in the molecule in addition to comparison to a theoretical simulation.
- Different variables affecting the matrix sample, such as C rod composition and ablation rates of the rods, are adjusted over several experiments.

Results & Analysis


Theoretical Predictions

- The table at left shows the calculated frequencies and intensities for the six modes of the fan-like isomer of TiC₃ as predicted by Rittby (2006).
- The v_1 and v_2 modes are likely too weak to be observed. The $v_{\rm e}$ mode, though strong, falls outside of the observation range.
- The calculated v_3 frequency is in good agreement with the 650 ± 50 cm⁻¹ observed by Wang, et al.

Vibrational mode	Frequency (cm ⁻¹)	Infrared intensity (km/mole)
$v_1(a_1)$	1291.1	4.1
$v_2(a_1)$	865.5	4.6
$v_3(a_1)$	696.7	64.4
$V_4(b_1)$	620.5	11.6
$V_5(b_2)$	1549.4	39.3
$v_6(b_2)$	459.8	28.2

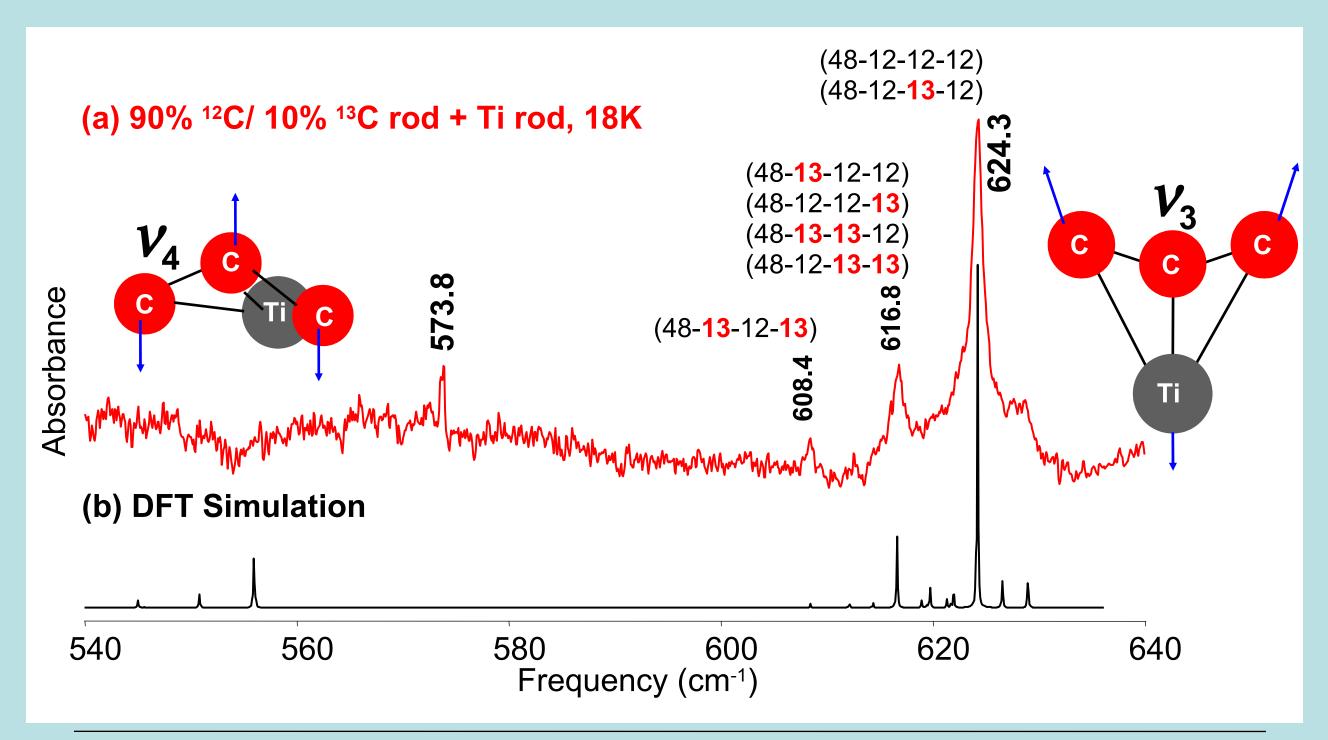
v₅ fundamental

- Spectrum (a) of the figure below shows an unannealed spectrum for the sample. The fundamental is observed at 1484.2 cm⁻¹ with a strong satellite absorption 3.4 cm⁻¹ to the left at 1480.8 cm⁻¹ which results from a secondary trapping site.
- Isotopic shifts separated by 3.4 cm⁻¹ are visible for both the fundamental and satellite.
- Spectrum (b) below shows the spectrum of the annealed sample (24 K) with the satellite absorption diminished.
- Spectrum (c) and the table below show the comparison between experimental observation and theoretical predictions. The scaled theoretical predictions are in good agreement with experiment, confirming observation of the v_5 mode.
- The v_5 mode corresponds to an asymmetric C stretch shown in the figure below.

Isotopomer	Observed	B3LYP/ 6-311G(3 <i>df</i> ,3 <i>pd</i>)	Scaled ^a	Difference
$Ti ext{-}C_{\alpha} ext{-}C_{\beta} ext{-}C_{\alpha}$	ν	v	ν	Δν
48-12-12-12	1484.2	1549.4	1484.2	0.0
48- <mark>13</mark> -12-12	1473.5	1538.0	1473.3	0.2
48-12- <mark>13</mark> -12	1450.9	1513.8	1450.1	0.8
48-13-13-12	1439.9	1502.2	1439.0	0.9
48-13-12-13	1461.4	1524.9	1460.7	0.7
48-13-13-13		1488.6	1426.0	

^a Scaling factor of 1484.2/1549.4 = 0.95792.

Acknowledgements


Funding

- The Welch Foundation
- TCU Research and Creative Activities Fund Maintenance

- Mike Murdock and David Yale of the TCU Machine Shop
- Jerry Katchinska, electrician
- The members of the Molecular Physics Lab.

v₃ fundamental

- The v_3 fundamental is observed at 624.3 cm⁻¹. It is a symmetric Ti-C stretch (see figure below, at right).
- Comparison of the experimental and theoretical spectra shows good agreement (see table below), confirming observation of the v_3 mode.
- The weak fundamental $V_4(b_1)$ due to carbon bending from the plane of the molecule may tentatively be assigned at 573.8 cm⁻¹. However, the absence of shifts precludes an unambiguous identification of this mode.

Isotopomer	Observed	B3LYP/ 6-311G(3 <i>df</i> ,3 <i>pd</i>)	Scaled ^a	Difference
$Ti\text{-}C_{\alpha}\text{-}C_{\beta}\text{-}C_{\alpha}$	ν	ν	ν	Δν
48-12-12-12	624.3	696.7	624.3	0.0
48- <mark>13</mark> -12-12	616.8	688.2	616.7	0.1
48-12-13-12	overlapped	696.5	624.1	
48-13-13-12	616.8	688.1	616.6	0.2
48- <mark>13</mark> -12-13	608.4	679.1	608.5	-0.1
48-13-13-13		679.0	608.4	

^a Scaling factor of 624.3/696.7 = 0.8961.

Conclusions

Two fundamental vibrations and one possible candidate vibration have been detected for the $C_{2\nu}$ fan-like isomer of TiC₃ trapped in solid Ar. The two identified modes are $v_3(a_1)$ = 624.3 cm⁻¹, and the $v_5(b_2)$ = 1484.2 cm⁻¹. The $v_4(b_1)$ vibrational mode may tentatively be assigned at 573.8 cm⁻¹. The observed frequencies are in good agreement with DFT predictions. The observed v_3 vibration is in good agreement with the 650 ± 30 cm⁻¹ observation reported in the photoelectron spectroscopy study.

Future Work

Future objectives are to characterize the structures and vibrations of additional MC_3 (M = transition metal) molecules and more complicated MC_n, n > 3 and M_mC_n molecules.

References