BIOL2021ALENIUSTHALHUBER55223 BIOL
Type: Graduate
Author(s):
Rachel Alenius-Thalhuber
Biology
Advisor(s):
Dean Williams
Biology
Location: Zoom Room 6, 01:42 PM
(Presentation is private)The reintroduction of captive-bred animals has been increasingly utilized for the conservation of many species. However, few studies have focused on the importance of environmental factors and resource availability in the success of wildlife reintroductions. The goal of this study was to see if location influences the short-term reintroduction success of captive-bred Texas horned lizards (Phrynosoma cornutum). Specifically, I monitored diets, growth rates, and survival of over 250 lizards reintroduced to 2 locations in Mason Mountain Wildlife Management Area (Mason County, TX) for 3 months. Diet, growth rates, and survival all differed between the two locations. The findings of this study suggest that environmental factors can play an important role in the reintroduction success of Texas horned lizards. Future research will focus on identifying specific habitat characteristics that may contribute to the observations of this study such as prey availability, vegetation, thermal habitat quality, and soil permeability.
BIOL2021BRYANT58318 BIOL
Type: Graduate
Author(s):
Austin Bryant
Biology
Marlo Jeffries
Biology
Advisor(s):
Marlo Jeffries
Biology
Location: Zoom Room 4, 01:02 PM
View PresentationChanges in thyroid hormones levels have been associated with alterations in somatic development and growth. However, recent studies have shown that alterations in thyroid hormone levels during early life stage (ELS) development can lead to long-term changes in reproduction. Specifically, fathead minnows that have been exposed to propylthiouracil (PTU) experienced a 50% reduction in fecundity. The purpose of this study was to determine if ELS thyroid disruption led to an alteration of reproductive behaviors in male fathead minnows. To accomplish this, larval fathead minnows were exposed to PTU and reproductive behaviors were quantified. Results showed that PTU-exposed fish demonstrated significantly fewer reproductive behaviors than those in the control group. This data provides an explanation for the previously observed 50% decrease in fecundity in the fathead minnows exposed to PTU and provides further evidence that ELS thyroid disruption can interfere with the display of key and ecologically-relevant behaviors later in life.
BIOL2021CLARE38450 BIOL
Type: Graduate
Author(s):
Catherine Clare
Biology
Advisor(s):
Matthew Hale
Biology
Location: Zoom Room 1, 01:26 PM
View PresentationThe rainbow trout, Oncorhynchus mykiss, is a partially migratory organism, that has been used recently to study the genetic control of migration. Much of this research has taken place at a unique site in Sashin Creek, Alaska, where the resident O. mykiss population is completely isolated from the migratory population. However, it is unknown the extent to which findings here are shared with other populations. Here we used a fine-scale genome-wide sequencing approach known as pooled sequencing to gather genetic data from 174 fish in two locations – Sashin Creek, Alaska and Little Sheep Creek, Oregon. Four sequenced pools were developed based on phenotype and population. We then measured differentiation between the populations to identify regions that may be correlated with the resident or migratory phenotype in both populations. We were able to locate 8 genes in 16 regions of shared elevated FST, and 17 genes over 16 regions with a significant Tajima’s D value that were specific to either the migratory or resident phenotype. These findings indicate specific genes and chromosomal regions that may be important in the regulation of migratory tendency in this species.
BIOL2021KANG64747 BIOL
Type: Graduate
Author(s):
Karis Kang
Biology
Advisor(s):
John Horner
Biology
Location: Zoom Room 5, 02:55 PM
View PresentationThe student hasn't submitted any abstract yet.
BIOL2021RYAN2552 BIOL
Type: Graduate
Author(s):
Patrick Ryan
Biology
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Zoom Room 1, 12:38 PM
(Presentation is private)For this project, I mapped potential river otter habitat in the Dallas/Fort Worth metroplex based on literature data on known river otter habitat preferences in Texas. I will use this data along with GIS data on land use/cover/vegetation and distance from suitable water bodies, to determine where in the DFW river otters may prefer to live. This project is interesting and informative because in recent years more urban run-ins with river otters have been documented in the DFW. So knowing where they might like to be is good information for citizens to have, as river otters continue to make a comeback in numbers in the state of Texas.
BIOL2021SEGALA33133 BIOL
Type: Graduate
Author(s):
Michael Segala
Biology
John Horner
Biology
Advisor(s):
John Horner
Biology
Location: Zoom Room 5, 02:31 PM
View PresentationCarnivorous plants inhabit nutrient-poor environments and supplement nutrient acquisition by capturing and digesting insect prey. Carnivorous adaptations have been hypothesized to be beneficial only in environments with high water and light availability. We hypothesized that plant morphology would change in response to resource availability, exhibiting traits that increase carnivory when light is abundant and exhibiting traits that increase photosynthesis when light is limited. In a field manipulation in Leon County, Texas, we examined the effects of feeding, shading, and their interaction on the morphology of the pitcher plant, Sarracenia alata. We employed a two-factor, cross-classified design, with shading (two levels, shaded and unshaded) and prey capture (two levels, fed and unfed) as factors. Eighty plants were haphazardly assigned to one of four treatments: (1) unshaded and fed (control); (2) shaded and fed; (3) unshaded and unfed; and (4) shaded and unfed. When light availability was reduced, plants produced pitchers that had smaller diameters, which is reflective of a photosynthetic morphology. Unfed plants exhibited reduced growth (produced fewer pitchers and had lower sum of pitcher heights). There was a significant interaction effect on estimated seasonal aboveground biomass: shading had no effect on the mass of unfed plants, but shading reduced the mass of fed plants. As the season progressed, competing vegetation reduced light availability to all pitchers. Plants in all treatments began to produce pitchers that were blade-like with a small, non-functional opening and a widened keel. This morphology would maximize light capture at the expense of prey capture. This experiment provides support for a theoretical model that suggests that carnivorous traits are only beneficial under conditions of high light availability. It also emphasizes the importance of periodic burns of carnivorous plant bogs to remove vegetation, thereby reducing light competition.
CHEM2021CRUZBARRIOS15423 CHEM
Type: Graduate
Author(s):
Eliandreina Cruz Barrios
Chemistry & Biochemistry
Onofrio Annunziata
Chemistry & Biochemistry
Advisor(s):
Onofrio Annunziata
Chemistry & Biochemistry
Location: Zoom Room 3, 12:54 PM
(Presentation is private)Micellization is a phenomenon of central importance in surfactant solutions. Here, we demonstrate that the diffusion-based spreading of the free boundary between a micellar aqueous solution and pure water yields a one-dimensional spatial profile of surfactant concentration that can be used to identify the critical micelle concentration, here denoted as C*. This can be achieved because dilution of micelles into water leads to their dissociation at a well-defined position along the concentration profile and an abrupt increase in diffusion coefficient. Rayleigh interferometry was successfully employed to determine C* values for three well-known surfactants in water at 25 ºC: Triton X-100 (TX-100), Sodium Dodecyl Sulfate (SDS), and Polyoxyethylene(4)Lauryl Ether (Brij-30). The dependence of C* on salt concentration was also characterized for TX-100 in the presence of Na2SO4, NaCl, and NaSCN. Accurate values of C* can be directly identified by visual inspection of the corresponding concentration-gradient profiles. To apply the method of least squares to experimental concentration profiles, a mathematical expression was derived from Fick’s law and the pseudo-phase separation model of micellization with the inclusion of appropriate modifications. While Rayleigh interferometry was employed in our experiments, this approach can be extended to any experimental technique that yields one-dimensional profiles of surfactant concentration. Moreover, diffusion-driven surfactant disaggregation is precise, non-invasive, requires single-sample preparation, and applies to both non-ionic and ionic surfactants. Thus, this work provides the foundation of diffusion-driven dilution methods, thereby representing a valuable addition to existing techniques for the determination of C*.
CHEM2021FREIRE63707 CHEM
Type: Graduate
Author(s):
David Freire
Chemistry & Biochemistry
Debora Beeri
Chemistry & Biochemistry
Kristof Pota
Chemistry & Biochemistry
Advisor(s):
Kayla Green
Chemistry & Biochemistry
Benjamin Sherman
Chemistry & Biochemistry
Location: Zoom Room 6, 01:34 PM
View PresentationOxidative stress is a result of an imbalance between reactive oxygen species (ROS) and the availability/activity of antioxidants. The catalase family of enzymes mitigate the risk from ROS by facilitating the disproportionation of hydrogen peroxide into molecular oxygen and water. Manganese containing catalase (MnCAT) consists of a binuclear manganese core bridged by carboxylate and single-atom ligands, likely water or hydroxide. In this work, hydrogen peroxide disproportionation using complexes of manganese with cyclen and pyclen were investigated due to the spectroscopic similarities of the latter with the native MnCAT enzyme. Potentiometric titrations were used to construct speciation curves to identify what complex compositions were present at different pH values. Based on these results, the complexes were made in situ by mixing stock solutions of ligand, buffer, and metal. The hydrogen peroxide disproportionation reaction was carried out in a sealed cell and PO2 measured using a microsensor (Unisense). When hydrogen peroxide was injected into the cell, disproportionation activity of the complexes was evident by (1) appearance of bubbles in solution, and (2) noticeable increase in PO2 as measured by the sensor. Spectroscopic investigation before, during, and after the reaction was used to follow changes in the UV-visible absorption of the complexes to collect information about the structure of the initial catalyst and any possible intermediate. Both, pyclen and cyclen were determined to form a dimeric structure under the reaction conditions used.
CHEM2021GUEDEZ50076 CHEM
Type: Graduate
Author(s):
Andrea Guedez
Chemistry & Biochemistry
Advisor(s):
Youngha Ryu
Chemistry & Biochemistry
Location: Zoom Room 6, 12:38 PM
(Presentation is private)The aptamer domain of a naturally occurring glycine riboswitches was randomized to generate a library containing billions of different variants. The dual genetic selection of this library was performed for sarcosine, a prostate cancer marker, and successfully led to the identification of sarcosine-specific synthetic riboswitches. When a chloramphenicol-resistance gene was expressed under control of these riboswitches, E. coli cells showed chloramphenicol resistance only in the presence of sarcosine. For a colorimetric assay, the sarcosine riboswitch gene was inserted upstream of the lacZ gene. When tested with various concentrations of sarcosine, the enzymatic activity of LacZ was proportional to the amount of sarcosine, clearly indicating the sarcosine-dependent gene regulation by the sarcosine riboswitch.
CHEM2021HENDERSON7043 CHEM
Type: Graduate
Author(s):
Nicholas Henderson
Chemistry & Biochemistry
Advisor(s):
Benjamin Janesko
Chemistry & Biochemistry
Eric Simanek
Chemistry & Biochemistry
Location: Zoom Room 1, 12:46 PM
View PresentationTriazines appear in pharmaceuticals, agrochemicals, and as building blocks for polymers used in materials science and medicine. Predicting the structure and dynamics in water as a function of pH requires reliable simulations of the pKa values for different sites for protonation. We present the initial DFT methods and continuum solvent for pKa of amines, ring nitrogens, and 2,4,6-triamino-1,3,5-triazine (melamine) derivatives. These M06-2X/6-311++G(2d,2p) calculations in SMD continuum solvent provide consistent accuracy for tested systems, use for future studies of more complex structures.