PHYS2023SNEVA39843 PHYS
Type: Graduate
Author(s):
Iver Sneva
Physics & Astronomy
Mia Bovill
Physics & Astronomy
Sachi Weerasooriya
Physics & Astronomy
Advisor(s):
Mia Bovill
Physics & Astronomy
Location: Second Floor, Table 3, Position 2, 11:30-1:30
View PresentationGalaxies are giant playgrounds in which stars, planets, and potentially sentient carbon-based lifeforms live out their lives. We live in the Milky Way galaxy, however, like all larger galaxies the Milky Way has a slight cannibalism problem. Larger, more massive galaxies are assembled from smaller galaxies where the surviving small galaxies are dwarf galaxies. The latest victims of our Milky Way’s cannibalism are the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC), and we have no idea what happened to their dwarf galaxies. To further complicate things, we don’t know how many dwarf galaxies fell into the Milky Way with the LMC, or where they ended up. In addition, the dwarf satellites of the LMC should be extremely faint and difficult to detect. We use computer simulations in order to take a bite out of these questions. We send a perfectly innocent LMC and its satellites into the gravitational potential of a Milky Way galaxy, and see where the dwarf satellites are flung.
PHYS2023SPOO58619 PHYS
Type: Graduate
Author(s):
Taylor Spoo
Physics & Astronomy
Natalie Myers
Physics & Astronomy
Advisor(s):
Peter Frinchaboy
Physics & Astronomy
Location: Third Floor, Table 1, Position 2, 11:30-1:30
View PresentationAstronomers determine chemical abundances of stars through spectroscopy, which provides clues as to where the stars were formed. We use the chemical composition of stars to infer their relative ages due to past enrichment. However, the surface abundance of stars is not always constant during its life and will change as the star evolves due to its internal processes. As a result, if we assume the chemical makeup of stars is constant within a star cluster, it can cause systematic errors when inferring stellar parameters. For example, in previous investigations, the star cluster M67 has been observed to have signatures of atomic diffusion: the combined effect of gravity pulling elements deeper into the star and radiation preventing elements from floating to the surface locks elements below the observable surface of a star which cannot be unlocked until the star evolves further, changing the measured abundance. When the star evolves, convection reaches into the interior of the star and carries these elements back to the surface where they can now be observed once again. This process can explain the elemental abundance variation found in main-sequence stars, like our Sun, and also evolving stars, which can also affect what apparent age we determine. Stars within a cluster tend to form from the same gas cloud at the same time, giving them the same age and initial chemical composition. Therefore, star clusters are ideal test-beds for investigating elemental abundance and the resulting apparent age variations. Data from the Apache Point Galactic Evolution Experiment survey provides the opportunity to investigate how abundance variation/diffusion is affected by age.
PHYS2023TOPKIRAN12056 PHYS
Type: Graduate
Author(s):
Ugur Can Topkiran
Physics & Astronomy
Anton Naumov
Physics & Astronomy
Alina Valimukhametova
Physics & Astronomy
Advisor(s):
Anton Naumov
Physics & Astronomy
Location: Third Floor, Table 6, Position 1, 11:30-1:30
View PresentationWith novel materials getting smaller and their size falling to the nanometer scale, it becomes harder to fully characterize them by only using the experimental apparatus at hand. Therefore, taking advantage of computational methods proves to be trustworthy in filling those gaps and in aiding our experimental data to get a better understanding of the nanomaterials’ structural and electronic properties. Graphene quantum dots (GQDs) have recently become one of the flagships of carbon nanotechnology due to their remarkable physical properties and, when functionalized, their ability to become water soluble, biocompatible, and capable of fluorescence in the visible and near-infrared. This makes them perspective carriers for therapeutic delivery and image-tracking. In order to assess the advantages of their utilization for a variety of bioapplications, we have investigated the optical properties of doped GQDs and their interactions with biomolecules using a variety of molecular simulation approaches. The true atomic ground state of the N-GQD is achieved by performing first-principle calculations based on density functional theory (DFT). DFT calculations also unrevealed the contributions of each functional group within the structure to HOMO–LUMO band edges. The adsorption of biomolecules and genes on the GQD surface has been further investigated with regard to the GQD structure, complementing experimental results that verify gene and drug complexation.
PHYS2023VALIMUKHAMETOVA64574 PHYS
Type: Graduate
Author(s):
Alina Valimukhametova
Physics & Astronomy
Roberto Gonzalez-Rodriguez
Chemistry & Biochemistry
Klara Gries
Physics & Astronomy
Bong Han Lee
Physics & Astronomy
Ugur C. Topkiran
Physics & Astronomy
Advisor(s):
Anton Naumov
Physics & Astronomy
Giridhar Akkaraju
Biology
Jeffery Coffer
Chemistry & Biochemistry
Location: Basement, Table 1, Position 2, 1:45-3:45
View PresentationWhile silencing RNA (siRNA) technology has become a powerful tool that can enable cancer-specific gene therapy, its translation to the clinic is still hampered by several critical factors. These include the inability of cell transfection by the genes alone, poor siRNA stability in blood, and the lack of delivery tracking capabilities. Recently, graphene quantum dots (GQDs) have emerged as a novel platform allowing targeted drug delivery and fluorescence image-tracking in the visible and near-infrared. These capabilities can aid in overcoming primary obstacles to siRNA therapeutics. Here, for the first time, we utilize biocompatible nitrogen and neodymium-doped graphene quantum dots (NGQDs and Nd-NGQDs) for the delivery of Kirsten rat sarcoma virus (KRAS) and epidermal growth factor receptor (EGFR) siRNA effective against a variety of cancer types. The non-covalent loading of siRNA onto GQDs is evaluated and optimized by the electrophoretic mobility shift assay and zeta potential measurements. GQDs as a delivery platform facilitate successful gene transfection into HeLa cells confirmed by confocal fluorescence microscopy at biocompatible GQD concentrations of 375 µg/mL. While the NGQD platform provides visible fluorescence tracking, Nd doping enables deeper tissue near-infrared fluorescence imaging suitable for both in vitro and in vivo applications. The therapeutic efficacy of the GQDs/siRNA complex is verified by successful protein knockdown in HeLa cells at nanomolar siEGFR and siKRAS concentrations. A range of GQDs/siRNA loading ratios and payloads is tested to ultimately provide substantial inhibition of protein expression down to 31-45% comparable with conventional Lipofectamine-mediated delivery. This demonstrates the promising potential of GQDs for the non-toxic delivery of siRNA and genes in general, complemented by multiwavelength image-tracking.
PHYS2023VAZQUEZ39282 PHYS
Type: Graduate
Author(s):
Jo Vazquez
Physics & Astronomy
Kat Barger
Physics & Astronomy
Alice Blake
Physics & Astronomy
Andrew Fox
Physics & Astronomy
Jaq Hernandez
Physics & Astronomy
Jay Lockman
Physics & Astronomy
Matthew Nuss
Physics & Astronomy
Bart Wakker
Physics & Astronomy
Advisor(s):
Kat Barger
Physics & Astronomy
Location: First Floor, Table 2, Position 2, 11:30-1:30
View PresentationIn order for galaxies to sustain current star-formation rates, including our Milky Way, they need to replenish their reservoirs of gas. High-velocity clouds (HVCs) entering our galaxy, like the Smith Cloud, present a possible source of gas for future star formation. Although the chemistry of the Smith Cloud has been previously studied, it is unclear whether there is variation in the chemistry of the Smith Cloud. With the Hubble Space Telescope, we measure the absorption of various elements along the tail and an adjacent fragment of the Smith Cloud. For the tail, we used existing observations, and for the fragments, we observed two new sightlines with Hubble. We additionally use radio emission-line observations from the Green Bank Telescope and from the Galactic All-Sky Survey (GASS) to understand the neutral hydrogen gas. Using observations in conjunction with the Cloudy simulations, we provide constraints on the chemistry of all five sightlines. Our new sulfur abundances for the adjacent fragment of the Cloud are higher than those downstream in the trailing wake. By quantifying the properties of gas clouds traveling through the Galactic halo, we can assess how they are impacted by their environments and better understand how the star-formation gas reservoirs of large galaxies are replenished.