CHEM2023WEIMER8419 CHEM
Type: Undergraduate
Author(s):
George Weimer
Biology
Alexa Frattini
Chemistry & Biochemistry
Advisor(s):
Jeffrey Coffer
Chemistry & Biochemistry
Location: Basement, Table 12, Position 2, 11:30-1:30
View PresentationUtilizing the supportive structure of hydrogels, the semiconducting character of porous silicon (pSi) membranes, and the biodegradability of both, a unique biosensor for the chemical analysis of health-relevant analytes can ideally be created.
Alginate-based hydrogels are water-infused, biodegradable polymer networks. These are particularly useful because of their environmental abundance, and their ability to interface well with human skin. These characteristics also make them an ideal medium for supporting pSi membranes and simultaneously assimilating them into a wide range of tissues.
Porous silicon (pSi), a highly porous form of the elemental semiconductor, is utilized to measure and conduct electrical signals throughout the hydrogel matrix. In diode form, these membranes exhibit measurable current values as a function of voltage, which can be used to detect bioelectrical stimuli such as the concentration of physiologically relevant ionic species (e.g. Na+, K+, and Ca2+).
Recent experiments center on integrating pSi membranes into various aqueous environments and hydrogels to test how variations in ion concentration affect the flow of electrical current as a function of applied voltage. pSi membranes are fashioned into diodes upon the attachment of 0.25 mm diameter copper wire using silver epoxy and annealing. An electrochemical cell is created by placing two pSi membranes parallel each other in an electrolyte composition. Current is measured as a function of applied voltage (typically from 0-5 V) for systems with differing NaCl concentration.
As expected, the magnitude of maximum current response is proportional to ion concentration present in the electrolyte, with an order of magnitude amplification or more of measured current for a given voltage upon immersion of the electrodes in an alginate hydrogel matrix relative to water alone.
This presentation will focus on initial diode fabrication protocols, as well as establishing limits of detection for simple ions species present in human sweat. More refined strategies are also envisioned, including the development of methods for stabilization of sensor performance along with miniaturization of the sensing platform itself.
CHEM2023WORTLEY11374 CHEM
Type: Undergraduate
Author(s):
Jacob Wortley
Chemistry & Biochemistry
Advisor(s):
Benjamin Sherman
Chemistry & Biochemistry
Location: Third Floor, Table 3, Position 1, 1:45-3:45
View PresentationLight-driven reactions, such as those utilized in photoelectrosynthetic applications, focus on capturing and transferring light energy to drive chemical reactions. For this purpose, light-active metal oxide semiconductor materials are used, such as BiVO4, 𝛼-Fe2O3, and WO3 to list a few. Previous work demonstrated the use of BiVO4 electrodes to drive the oxidation of benzyl alcohol to benzaldehyde in the presence of a TEMPO (2,2,6,6-tetramethylpiperidine) mediator.1 This study seeks to improve the photoelectrochemical performance of this reaction by using a heterojunction WO3-BiVO4 electrode. We hypothesize that the heterojunction would decrease charge carrier recombination and improve the photochemical yield of the reaction compared to a BiVO4 electrode.2,3 The WO3-BiVO4 interface forms a type II band alignment allowing electrons from photoexcited BiVO4 to transfer into WO3 and holes to accumulate at the BiVO4-electrolyte interface.4 Two techniques, UV-visible spectroscopy and incident photon-to-current efficiency (IPCE) measurements, were applied to better understand why the heterojunction improved the photocurrent density in the presence of reaction components in solution. UV-visible spectroscopy was used to determine the band gaps of the materials. Information about the efficiency of light energy conversion to chemical energy was obtained by IPCE measurements. IPCE values are determined by relating the proportion of incident light power to the current produced by illuminating the WO3Â-BiVO4 photoanode over a small wavelength range. Photoanodes exhibiting higher IPCE % are more effective at driving photoelectrosynthetic reactions.1 To test the effect of WO3 on the energy conversion efficiency, IPCE experiments were run for the WO3-only, BiVO4-only, and WO3-BiVO4 samples. Comparing IPCE values for WO3-BiVO4 samples shows a clear increase compared to BiVO4-only photoanodes. These results demonstrate how coupled materials (WO3-BiVO4) can generate higher current densities upon illumination for driving photoelectrosynthetic reactions.
COSC2023BOLDING58767 COSC
Type: Undergraduate
Author(s):
Matthew Bolding
Computer Science
Joey Flores
Computer Science
Zyler Niece
Computer Science
Emma Sanders
Computer Science
Advisor(s):
Krishna Kadiyala
Computer Science
Location: First Floor, Table 5, Position 1, 1:45-3:45
View PresentationChalk Mountain Services of Texas, LLC. is a trucking company whose business is transporting raw materials, such as fracking sand, to various oilfield sites in and around west Texas. With over 1,300 assets in their fleet, they’re presented with a number of logistical problems, like optimizing a driver’s time to make as many trips between drill sites and raw material depots as possible in a day. Such routing and scheduling applications must have accurate data—the assets are either in or out of service and their location—to schedule sensible routes.
Should an asset break down in the unforgiving terrain of west Texas, the appropriate employee should have the ability to take note of such an incident so that routing and scheduling applications have correct, up-to-date data. The company’s current solution allows for any user to make changes to any asset, regardless of authorization status. Inconsistencies in assets’ statuses can lead to an employee having to manually intervene in the scheduling process, which decreases the company’s overall efficiency. Additionally, their current application is not mobile-friendly, but a sizable portion of users nevertheless interface with the current website from their phones.
The company’s expectations come in either one of two forms: a website and a companion app or a reactive website that can be used on a desktop or mobile device. The application shall use CRUD—create, read, update, and delete—methods to keep track of the assets, and the application shall provide different users with different access levels with Active Directory authentication. We have created a reactive website that can be used from either a desktop environment or mobile one, and our implementation of their requirements exists as a three layer architecture: a Microsoft SQL Server database, a backend developed in NodeJS, and a React front end. To make the deployment as simple as possible, we did not pursue developing the application on cloud providers; the application depends on a connection to an in-house SQL server and Active Directory service both of which cannot be accessed outside their intranet and are critical to the application’s functionality.
COSC2023CALLAN8645 COSC
Type: Undergraduate
Author(s):
Sam Callan
Computer Science
Micah Collins
Computer Science
Yilika Loufoua
Computer Science
Rory McCrory
Computer Science
Advisor(s):
Krishna Kadiyala
Computer Science
Location: Basement, Table 4, Position 1, 11:30-1:30
View PresentationThe Instructional Equity Observing Tool is an online video/audio analysis tool that is geared towards assisting the teachers and faculty of educational institutions in analyzing and understanding how their interaction with students translates into real learning. Our platform is meant to replace the current, manual method of analysis that many teachers/instructors perform to try and quantify different metrics about their teacher-student interaction. Instructors have expressed desire to view metrics such as the time the teacher talks during a lesson, what is the response time of students to those questions, and other data points such as the types of questions being asked (as categorized by Bloom’s Taxonomy). Quantifying these instructional variables helps these instructors more accurately understand the areas that they are strong in, and more importantly, the areas in which they can be more interactive with the students as to allow them to better absorb the lessons being taught. With the help of our tool, we can allow teachers to quickly and efficiently gather this data about each of their lessons so that data driven changes in teaching techniques is possible, and moreover, so that teachers can identify potential vectors of ineffective instruction.
The process for using this application is for a user to login/sign-up for our site, then they will proceed to upload either an audio or video file to the designated location. Our tool will then take that video/audio file and execute a customized API call to AssemblyAI (https://www.assemblyai.com/) that transcribes this file into text. We then perform specialized data manipulation operations on the transcript to generate all the different metrics and display them in an easy-to-read format that the user can then scroll through and analyze the results. The user will also have the option to save this report that is generated as a pdf, which they or an administrator role will be able to access and view again at a later time.
Our application is hosted using Amazon Web Services (AWS) and utilizes many different functionalities that this service provides. AWS manages our authentication and authorization, user account management, and report storage functionalities. Our current system does not use its own machine learning model and instead offloads transcription to the AssemblyAI API, however this could be updated in the future with the addition of large datasets for training. A specifically trained machine learning model in this case could provide a more accurate categorization of questions and a more flexible tool that could eventually make predictions or suggestions to the user on the best ways to improve their teaching methods.
COSC2023FAHIMI38169 COSC
Type: Undergraduate
Author(s):
Shawn Fahimi
Computer Science
Thuong Hoang
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Third Floor, Table 5, Position 1, 11:30-1:30
View PresentationOpen Planner is a web application designed to meet the increasing need for college students to have a way to more easily organize and access major
assignment/exam dates across all courses during busy college semesters. Open Planner seeks to ease agenda making for students by parsing uploaded student syllabi for major assignment/exam dates and generate a personalized calendar the student can access from his/her account upon sign-up and syllabus upload. Once they have access to their personal calendar, students will be able to add events, delete and modify existing events, and customize their course calendars, giving them fast access to a customized and modifiable calendar without the time demanding task of looking through course syllabi and adding major dates one by one.
COSC2023GAUCIN3974 COSC
Type: Undergraduate
Author(s):
Alberto Gaucin
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Second Floor, Table 5, Position 2, 1:45-3:45
View PresentationIndigenous communities have a deep-seated understanding of the importance and sacredness that their land has in their daily lives (native lands.ca); they have a deep sense of place. The primary objective of Native Meteorites (NaMe) is to amplify the work of the Native Earth | Native Sky (NENS) program by recognizing the critical importance of free-choice learning in STEM education and providing a different lens through which STEM can be made culturally relevant for students in Native American nations.
This project focuses specifically on meteorites found on the lands of the three Oklahoma Native American tribes participating in NENS and provides a concrete example of the cultural relevance of planetary science and STEM, utilizing concepts that are deeply rooted in a sense of place. The goal of this project is to increase the interest and participation of an underrepresented important people group in the national STEM workforce, as well as provide an example of the relevance of place-based STEM education for all individuals.
This project consists of an interactive map, which displays where relevant meteorites landed; and also provides supplementary resources for education. Members of the NaMe project will develop STEM resources that focus on meteorites found on Native American Lands. This will be unlike other free-choice learning because this interactive map caters specifically to indigenous peoples’ learning styles.
In collaboration with Native American individuals, the team designed the site layout, content, and imagery to be as inclusive and considerate as possible. The product of this project ultimately caters to an audience that is quite underrepresented– so we used conscious software development in the website-building process.
The interactive map feature of this site will increase the interest and participation of an underrepresented important people group in the national STEM workforce, as well as provide an example of the relevance of place-based STEM education for all individuals.
COSC2023JAIN29305 COSC
Type: Undergraduate
Author(s):
Chirayu Jain
Computer Science
Madison Gresham
Computer Science
David Hanft
Computer Science
Jerry Wu
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Third Floor, Table 6, Position 1, 1:45-3:45
View PresentationThe system to be is BMW Performance Horse Database, also referred to as BMWPHD. The client is Brooke Wharton with BMW Quarter Horses. The purpose of her company is to breed and raise horses for reining and reined competitions. Currently this field faces the issue that horse data is spread over multiple different platforms that do not communicate with one another. With that, the main objective of BMWPHD is to create a user-friendly searchable database for the task of finding and ranking horses for breeding, buying, and determining show schedules. The users of this application include fans, riders, coaches, judges, and investors in the sport. The hope is to not only bring more fans to the sport through the easy access to data, but also improve the level of competition so that the horses can be bred stronger and therefore perform at a higher level within the sport. On the technical side, the system will be implemented with the following technologies: the frontend will use Vue.js, the backend will be implemented in Java Spring Boot, the database will be built in PostgreSQL. The final version of the application will be deployed on Heroku.
COSC2023NGUYEN35413 COSC
Type: Undergraduate
Author(s):
Bao Nguyen
Computer Science
Quynh Dong
Computer Science
Vipul Lade
Computer Science
Chase Lennartson
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Basement, Table 2, Position 2, 11:30-1:30
View PresentationThe Chinese Learning Platform(CPL) is a program to help students to learn the Chinese language. This platform will be used by both students of these ages attempting to learn Chinese as well as by the teachers who will use the platform as a teaching tool to help those students. As it is a teaching tool, the main motivation behind it is educational, with the hope to support students in learning the Chinese language, and in the future, this will be expanded to learning various other languages using the same CPL. The platform hopes to help these students utilize a textbook created by CPL, and will also include features that will help the students listen, read, write, and speak in the language they are learning.
COSC2023RAYNOR5002 COSC
Type: Undergraduate
Author(s):
Lucas Raynor
Computer Science
Advisor(s):
Krishna Kadiyala
Computer Science
Location: Third Floor, Table 4, Position 3, 11:30-1:30
View PresentationThe COVID-19 pandemic has made it difficult for families to stay connected, especially those separated by distance. Keepsake is a software product that was developed with the aim of helping families bridge the gap by enabling them to share stories and memories across generations. The platform provides a secure and private space where family members can record and post audio content that can be accessed by their loved ones anytime, anywhere via cloud storage.
Keepsake offers an intuitive user interface that is accessible to users of all ages, making it easy for them to navigate and listen to the audio content. By hosting the platform on Amazon Web Services (AWS), Keepsake provides a reliable and scalable solution for storing and retrieving audio files/posts across the years. The platform is designed to ensure that each family's audio files are separate and private from other family audio files, offering complete privacy to users.
To get started with Keepsake, users can easily join their families and start recording and uploading audio files. The platform allows for organization and sharing with specific family groups, making it easy to share stories and memories with those who matter most. Keepsake is a powerful tool for connecting families across generations, providing accessibility, convenience, and security for families of all sizes and backgrounds.
ENGR2023LOPEZ13454 ENGR
Type: Undergraduate
Author(s):
Daniel Lopez
Engineering
Chelsea Boh
Engineering
Sam Busa
Engineering
Nhu Le
Engineering
Advisor(s):
Morgan Kiani
Engineering
Location: Third Floor, Table 8, Position 1, 1:45-3:45
View PresentationPower quality is the compatibility between the voltage that comes out of an electrical outlet and the power load that is being plugged into it. A power load (also known as electrical load) is any electrical device that needs to be plugged into a larger power grid to run, such as televisions and microwaves.
Different devices require different power loads to run at full efficiency and while electrical systems are capable of handling newer power loads, they are currently set to work with older ones as well. This may cause some side effects on power quality in the system. In this project, we investigate how to improve the power quality in the system caused by an inductive older load.