Filter and Sort







BIOL2021JAMES26632 BIOL

Use of DNA Barcoding to Distinguish Between Morphologically Similar Red Bats

Type: Undergraduate
Author(s): Jacob James Biology
Advisor(s): Amanda Hale Biology Dean Williams Biology
Location: Zoom Room 6, 01:58 PM

Across North America, bats are being killed in large numbers at wind energy facilities and there is concern that this level of mortality threatens bat populations. Currently three species of migratory tree bats, including two Lasiurus species, comprise ~75% of all known fatalities; however, as wind energy development expands into new areas (e.g., the southwestern U.S.) there is the potential for new species to be impacted. Ongoing work in our labs has indicated that that our current understanding of the distribution of Lasiurus species across North America is limited, at best, and that more species are impacted by wind energy development than previously thought. Accurate knowledge about which species are being impacted where, and to what extent, will greatly improve the implementation of effective mitigation strategies. We obtained 19 bat fecal samples from wild-caught Lasiurus bats from a study being conducted at Texas State University to improve the species-specific effectiveness of an ultrasonic acoustic deterrent (UAD) at deterring bats from approaching operational wind turbines. Based on morphology, these wild-caught bats were identified as eastern red bats (L. borealis), but it is possible that some of the individuals were western red bats (L. blossevillii). We extracted DNA from the bat fecal samples and amplified the COI mitochondrial gene to determine the correct species identification for each sample. The final sequencing reactions are underway, and the results will be available soon. These data will improve the accuracy of the results from the flight cage study at Texas State University and will contribute to improving strategies to reduce bat fatalities at wind energy facilities.

View Presentation

BIOL2021JOYCE51871 BIOL

Assessing Genetic Diversity in Northern Yellow Bats Killed at Wind Energy Facilities

Type: Undergraduate
Author(s): Jack Joyce Biology
Advisor(s): Amanda Hale Biology Dean Williams Biology
Location: Zoom Room 6, 02:39 PM

Although wind energy facilities are a growing source of renewable, clean energy, they have been shown to contribute to increasing bat mortalities which could threaten the persistence of bat populations. This study aims to expand what we know about the biology and behavior of bat species impacted by wind energy development. Recent research has indicated that yellow bats (Lasiurus spp) are killed at wind energy facilities in the Rio Grande Valley of south Texas. We have limited understanding of the population biology or movement patterns in these species, so the extent to which wind turbine mortality may impact these bats is currently unknown. As part of ongoing research in our labs, I extracted DNA from 18 tissue samples collected from northern yellow bats (Lasiurus intermedius) at a wind energy facility in Willacy county, Texas in 2015. I amplified a region of the mtDNA, the COI locus, and will compare genetic diversity of these samples to a larger data set from wind energy facilities in nearby Starr and Hidalgo Counties that were studied in 2016 and 2017. Together, these datasets will improve our understanding of Lasiurus intermedius genetic diversity and population structure, and have the potential to provide much needed insights into the potential impacts of wind energy development on bats in southern North America.

View Presentation

BIOL2021LEE9767 BIOL

Investigating the Effects of BRCA1 Construct Length on its Interaction with PALB2

Type: Undergraduate
Author(s): Jaehyun Lee Biology
Advisor(s): Mikaela Stewart Biology
Location: Zoom Room 4, 03:35 PM

Mutations in BReast CAncer 1 protein (BRCA1) play a crucial role in DNA damage control such as double-strand DNA break repair mechanisms. Mutations in BRCA1 increase the chance of disrupted genetic integrity by its contributions to the development of breast cancer. BRCA1 must bind to its partner protein PABL2 (Partner and Localizer to BRCA2) in order to properly carry out its function in the repair mechanism pathway, but its conformation once bound to PALB2 is not clear. In its inactive state, PALB2 is known to remain in an alpha-helical coiled-coil homodimer conformation. Through this observation, we hypothesized that the intrinsically disordered region of BRCA1 on its binding surface will undergo a conformational change into an alpha-helical form. In order to test this hypothesis, we first created a truncated BRCA1, making it 50 amino acids long, then conducted nuclear magnetic resonance (NMR) experiments. Through the NMR experiments, we found that the binding interface of BRCA1 does change its conformation into a helical state, forming a coiled-coil heterodimer upon binding with PALB2.

View Presentation

BIOL2021MARTIN47525 BIOL

ASSESSING THE EFFECTS OF INHERITED MUTATIONS ON PALB2 STRUCTURE AND FUNCTION

Type: Undergraduate
Author(s): Davis Martin Biology
Advisor(s): Mikaela Stewart Biology
Location: Zoom Room 6, 01:50 PM

The proper functioning of the protein PALB2 is vital to preventing tumor formation within breast tissues in individuals. Upon the detection of DNA damage, PALB2 and BRCA1 bind to each other along with BRCA2 to form a DNA repair complex. This complex then repairs DNA double-strand breaks in order to prevent the accumulation of DNA damage that leads to breast cancer. While both BRCA1 and BRCA2 have been extensively studied, a lot of information about the structure and function of PALB2 remains unknown. It is thought that BRCA1 and PALB2 bind via PALB2’s coiled-coil domain; however, how variants of unknown significance (VUS) affect this binding interaction is largely unknown. Further, while some of these VUS have been studied in vivo, cheaper and easier in vitro methods to measure their effect on binding affinity have yet to be formulated. Thus, we hypothesized that isothermal titration calorimetry (ITC) could be used as an in vitro testing method for assessing the effects of VUS within the coiled-coil domain of PALB2 on the binding event between PALB2 and BRCA1. Further, we hypothesized that a decrease in binding between the two proteins as measured by ITC would correlate with a decrease in DNA repair as measured in vivo. We tested the efficacy of this method by creating seven mutations within the coiled-coil domain of PALB2 and measuring the binding event of PALB2 to BRCA1 via ITC. Our results strongly suggest that the binding event is enthalpic in nature and can be adequately measured via ITC as evidenced by the correlation between our in vitro data and previous in vivo data.

View Presentation

BIOL2021MIELCUSZNY31700 BIOL

Evaluating sex-specific differences in cellular immune function in a small fish model, the fathead minnow

Type: Undergraduate
Author(s): Andrew Mielcuszny Biology
Advisor(s): Marlo Jeffries Biology
Location: Zoom Room 3, 02:47 PM

Evaluating sex-specific differences in cellular immune function in a small fish model, the fathead minnow

Andrew Mielcuszny
Department of Biology

Advisor: Dr. Marlo Jeffries

Previous studies in the Jeffries lab have shown that male and female fathead minnows differ in their ability to fight and survive bacterial infections. Specifically, males have significantly higher rates of mortality upon infection than females. Despite this, few studies have sought to identify the sex-specific differences in specific immune processes that underlie the observed differences in survival following pathogen infection. The purpose of this study was to examine the sex-specific differences in phagocytic cell activity, a key innate immune response in which immune cells engulf and destroy pathogens. To evaluate phagocytic cell activity, kidney cells were isolated from male and female adult fathead minnows and their ability to phagocytose fluorescently-labeled E. coli was measured. The relative phagocytic cell activity of male and female fathead minnows will be presented in an effort to explain whether differences in phagocytosis contribute to differences in pathogen resistance.

View Presentation