BIOL2017GANDHI2414 BIOL
Type: Undergraduate
Author(s):
Jason Gandhi
Biology
Advisor(s):
Amanda Hale
Biology
View PresentationRecent research has identified dung beetles as bioindicator species found in a wide range of environments. Bioindicators function as monitors for the health of an ecosystem, which can be determined by analyzing the function, population, or status of the species in said environment. The purpose of our project was to determine if dung beetle diversity and abundance differed between primary and secondary rainforests. We conducted a study in the transition zone between tropical wet forest and premontane rainforest at the El Jamaical Field Station in Costa Rica. We acquired feces from both cows and horses near the field station. For trial 1, we made four bait traps using cow feces and one control for each of the forest types. Within each forest type, we placed the bait traps 25 meters apart. We then repeated the experiment using horse feces for trial 2. Traps sat for a period of 24 hours to allow dung beetles time to burrow into the traps. We then collected and processed the samples. Processing consisted of sifting and breaking down the feces in a meticulous manner to find, collect and identify all dung beetles present. We identified a total of 303 beetles in trial one and 0 in trial 2.
BIOL2017GUILBEAU56537 BIOL
Type: Undergraduate
Author(s):
Kelly Guilbeau
Biology
Advisor(s):
Matthew Chumchal
Biology
Ray Drenner
Biology
(Presentation is private)Mercury (Hg) is a hazardous contaminant that can be transferred from aquatic to terrestrial environments by emerging aquatic insects. Terrestrial predators, such as spiders, that live along shorelines of water bodies may consume emerging aquatic insects and become contaminated with Hg. Mercury-contaminated spiders may pose a risk to arachnivorous songbirds. The degree to which most families of spiders are contaminated with Hg and the risk they pose to songbirds is not well understood. The objectives of this study were to determine 1) Hg concentrations in two families of shoreline spiders (long-jawed orbweavers, [Tetragnathidae] and crab spiders [Thomisidae]) and 2) determine the risk these spiders pose to arachnivorous birds. We collected representatives from two families of spiders from the shorelines of 10 ponds located at the LBJ National Grassland in north Texas, USA. Both spider taxa in the present study were contaminated with Hg, however long-jawed orb weavers had significantly higher concentrations of Hg in their tissues than crab spiders (p < 0.001; average Hg concentration = 346 ng/g and 35.7 ng/g respectively). We calculated wildlife values for various songbirds to determine health risks that these Hg-contaminated spiders may pose to songbirds. Spider-based wildlife values revealed that one of the families of shoreline spiders, Tetragnathidae, had concentrations of MeHg high enough that they may pose a risk to arachnivorous songbirds that consume spiders along the shorelines of ponds.
BIOL2017HANNAPPEL29891 BIOL
Type: Undergraduate
Author(s):
Madeline Hannappel
Biology
Advisor(s):
Ray Drenner
Biology
Matthew Chumchal
Biology
Tamie Morgan
Biology
(Presentation is private)Mercury (Hg) is a toxic environmental contaminant formed in aquatic systems by bacterial methylation of inorganic mercury deposited from the atmosphere. Historically Hg contamination of food webs was thought to be restricted to aquatic systems. However recent research has shown that emergent aquatic insects such as dragonflies are contaminated with Hg as aquatic larvae, and then transport it to terrestrial ecosystems when they emerge from the water as adults. Terrestrial predators such as birds can be contaminated with Hg when the consume Hg-contaminated dragonflies. Because dragonfly larvae are top predators in aquatic systems, they contain high concentrations of Hg when they emerge from aquatic systems and can potentially pose a threat to the health of birds that feed on them. The objective of this study was to estimate the Total Hg (THg) concentrations in dragonflies across ecoregions in the South Central U.S. and the hazard Hg-contaminated dragonflies pose to dragonfly-consuming birds. I estimated THg concentrations in dragonflies by using published data on THg concentrations in predatory fish (pF) in 14 ecoregions and converting it to THg concentrations in gomphid dragonflies (gD) assuming a linear relationship (gD) = 0.0856(pF) + 25.92 constructed using data from Haro et al. 2013. The variation of predicted dragonfly THg was mapped by ecoregion using GIS software. GIS analysis tools were used to assess the risk the predicted THg in dragonflies that would pose a health hazard to dragonfly-consuming red winged blackbirds (Agelaius phoeniceus) in each ecoregion.
BIOL2017HANNAPPEL3935 BIOL
Type: Undergraduate
Author(s):
Madeline Hannappel
Biology
Advisor(s):
Ray Drenner
Biology
Matthew Chumchal
Biology
(Presentation is private)Mercury (Hg) is a highly toxic environmental contaminant found in all waterbodies on earth. Emergent aquatic insects (like mosquitoes) transfer Hg from the aquatic systems to terrestrial consumers such as spiders. The objective of this study was to examine Hg concentrations in larval mud daubers (Sceliphron caementarium) and their spider prey in mud dauber nests. Adult mud daubers capture spiders with a paralyzing sting to use as the food source for the larvae in their nest. I collected 350 mud dauber nests from three bridges on the Trinity River and one building 40 m inland from the Trinity River in Fort Worth, TX. The nests contained 74 mud dauber larvae and over 2,000 spiders of five different families. I used a Direct Mercury Analyzer to determine the total Hg concentration of mud dauber larvae and five spider taxa. All mud dauber larva and spiders were contaminated with Hg. The inland site had the lowest concentration of Hg in the spiders, suggesting that the spiders at this site were more reliant on low Hg terrestrial prey than high Hg aquatic prey. This is the first study to demonstrate that mud daubers nesting along river systems are part of the mercury cycle because of their use of shoreline spiders as prey for their larvae.
BIOL2017HUYNH10840 BIOL
Type: Undergraduate
Author(s):
Tu Huynh
Biology
Jessie Farris
Biology
Advisor(s):
Michael Misamore
Biology
Amanda Hale
Biology
Dean Williams
Biology
View PresentationLeaf cutter ants are the rainforest’s most prolific herbivore, eating more vegetation than any other type of creature. The ants have a profound effect on the Neotropical ecosystem, for they improve the richness of the soil, and, by removing leaves from the trees, allow sunlight to reach the lower levels of the forest, facilitating plant growth and diversity. Leaf cutter ants are selective in the plant materials they harvest. The goal of this study is to determine whether leaf cutter ants have a preference for fragile versus tough leaves by examining the relationship between level of leaf damage by leaf cutter ants and leaf toughness among a number of plant species. Leaves damaged by leaf cutter ants of several plant species were identified and collected from the trails of two ant nests in El Jamaical Field Station in Costa Rica. Area of leaf cutter herbivory were traced and recorded as the measurements for level of leaf herbivory. Leaf toughness was quantified as the force required for tearing the leaf apart by using a gravity-based tearing device. From the obtained data, we will examine the level of leaf herbivory of each leaf of the same species against its toughness to see whether leaf cutter ants prefer cutting fragile leaves over tough leaves in order to minimize energy cost. We will also compare this foraging pattern between species to see whether there is a variation in the ants’ preference among different plant species.