BIOL2017LESUEUR27850 BIOL
Type: Undergraduate
Author(s):
Meriel LeSueur
Biology
Leah Thornton
Biology
Advisor(s):
Marlo Jeffries
Biology
View PresentationOver the last few decades, there has been increasing concern regarding the environmental presence and biological effects of endocrine disrupting compounds. Studies aimed at determining the adverse impacts associated with exposures to thyroid disrupting compounds have focused primarily on the ability of such compounds to alter patterns of growth and development; however, the actions of thyroid hormones extend well beyond these basic functions. As such, there is a need to investigate the potential for thyroid disrupting compounds to alter other physiological processes. Recent studies have suggested a role for thyroid hormones in the regulation of immune function. As such, it is reasonable to suspect that exposure to endocrine disrupting chemicals that impair thyroid activity will lead to alterations in immune function and subsequent changes in pathogen and disease resistance. Using the fathead minnow (Pimephales promelas) as a model organism, this study sought to determine the impact of propylthiouracil (PTU, a known thyroid inhibitor) on various aspects of immune function including immune gene expression, spleen index and pathogen resistance. To achieve this, male fathead minnows were divided into two groups – a control and a PTU-exposed group. Following a 21day exposure period, both groups were challenged with the pathogen Yersinia ruckeri, and mortality was monitored for 14 days to assess pathogen resistance. In addition, tissues (i.e., liver, spleen and kidney) were sampled at 8 hours and 72 hours post infection for the assessment of immune gene expression and spleen index. PTU exposed males were less able to survive pathogen infection relative to the controls. In addition, PTU-exposed males had significantly lower spleen index than the controls following injections, suggesting that they had a reduced ability to elicit an immune response. Gene expression of certain immune genes also showed a change in pattern of expression, signifying potential pathways and proteins that are particularly affected by thyroid hormone presence. These results show that chemically-induced decreases in thyroid hormone levels can suppress immune function and demonstrate that the immune system is a target for thyroid disrupting chemicals.
BIOL2017MARX44524 BIOL
Type: Undergraduate
Author(s):
Murphy Marx
Biology
Morgan Macaulay
Biology
Advisor(s):
Amanda Hale
Biology
View PresentationNeotropical rain frogs serve as an indicator of habitat and ecological disruption in tropical rainforests through species-specific response to environmental stimuli. These responses are reflected in preference of habitat, such as primary or secondary forest, which may provide insights into the health and stability of not only Neotropical rain frogs and amphibians, but also of the surrounding ecosystem. We studied the diversity and abundance of rain frogs at the El Jamaical Field Station in Costa Rica, located in a transition zone between tropical rainforest and premontane rainforest, by overturning leaf litter along previously established trails that passed through both forest types, photographing found individuals, and recording discovery locations on a map. Focusing our study on the primary and secondary forests, we predicted that the diversity and abundance of rain frogs would be greater in the primary forest than in the secondary due to differences in diversity of trees and flora, humidity, temperature, and light levels. Data analysis will include species identification, proximity to dry streams, and comparison between primary and secondary forest.
BIOL2017NYSTROM19457 BIOL
Type: Undergraduate
Author(s):
Gunnar Nystrom
Biology
Advisor(s):
Marlo Jeffries
Biology
View PresentationThe Syr Darya, one of the largest rivers in southern Kazakhstan, is a major source of freshwater feeding the Aral Sea. In the 1950s, water was diverted from the Syr Darya to support agricultural production leading to the drying of the Aral Sea, which has been characterized as one of the worst environmental catastrophes in modern day history. Mismanagement of these diverted waters has paved the way for potential surface water contamination in the Aral Sea Basin. While efforts to revive the Aral Sea are underway, few investigations have sought to assess the impacts of potential heavy metal contamination in the Syr Darya Watershed. As such, the goal of this study was to assess the presence and biological effects of heavy metal contaminants in the Syr Darya. This was accomplished by collecting water and sediment samples from five sites and roach (Rutilus rutilus) samples from three sites along the Syr Darya. Water, sediment, and roach muscle tissue samples were analyzed for a suite of contaminants, while roach liver, brain, gonad, and gill tissues were analyzed for the expression of genes considered to be biomarkers of heavy metal exposures (e.g., metallothionein and superoxide dismutase). Water and fish muscle tissue analysis revealed the presence of multiple heavy metals above local regulatory limits. Roach fish from two of the three sites experienced alterations in the expression of genes considered biomarkers of contaminant exposure suggesting that chemical loads at some of the sites in the Syr Darya were sufficient to induce biological effects. Data collected as part of this study will be utilized to complete an ecological risk assessment of the Syr Darya River basin.
BIOL2017OCONNOR46027 BIOL
Type: Undergraduate
Author(s):
Michaela O'Connor
Biology
Haley Moore
Biology
Kelsey Paulhus
Biology
Morgan Thompson
Biology
Advisor(s):
Michael Chumley
Biology
Gary Boehm
Psychology
View PresentationAlzheimer’s disease is a neurodegenerative disorder characterized by the presence of amyloid beta (Aβ) plaques. This pathology results in neuronal dysfunction and eventual cell death. Aβ plaques come from the buildup of beta-amyloid protein which clump together and block cell-to-cell signaling at synapses. To stimulate Aβ production, our lab uses an inflammation model utilizing lipopolysaccharide (LPS) injections. When mice are given intraperitoneal LPS injections over the course of one week they show a significant increase of Aβ in the brain. When a second course of LPS is administered following a two-week recovery period, Aβ levels return to baseline levels. The initial exposure to LPS protects the mouse from a second exposure, preventing further increase in the Aβ. One likely explanation is that the initial exposure primes the immune system, enabling the mouse to quickly initiate an antibody response upon subsequent exposure to LPS. The objective of the present study was to investigate the antibodies produced after the second course of LPS in 5xFAD mice. Plasma antibody levels were measured, and co-localization of antibodies around hippocampal Aβ plaques was investigated. We found that mice who received a second course of LPS injections had a significantly higher amount of IgG co-localized around plaques compared to non-treated control animals. This correlated with higher levels of IgG in the plasma. This data suggests that LPS exacerbates the antibody response in 5xFAD mice, and that these antibodies may specifically target Aβ.
BIOL2017OLIVAS5117 BIOL
Type: Undergraduate
Author(s):
Alexis Olivas
Biology
Marlo Jeffries
Biology
Kate Phillips
Biology
Advisor(s):
Marlo Jeffries
Biology
(Presentation is private)Changes in early physiological development due to chemical effluent exposure can be determined by measuring the levels of gene expression. Genes involved in cardiovascular and neurological development, as well as growth, serve as sensitive endpoints in toxicity tests involving the use of larvae. The purpose of this research was to determine when during development the level of gene expression was high enough for contaminant-induced decreases in expression to be detected. A suite of genes involved in growth, cardiovascular and neurological development was examined in embryos and larvae from 0 to 11 days post hatch. This information was used to determine time points at which selected genes were most highly expressed. For the growth-related genes, expression levels of growth hormone (gH) were highest at Days 4-7 and 11, levels of growth hormone receptor (gHR) at Days 1-7 and 11, and levels of insulin-like growth factor (igf1) at Days 4-11. For the thyroid hormone receptors, thyroid hormone receptor-α (TRα) showed highest expression levels at Days 3-11 and thyroid hormone receptor-β (TRβ) showed highest levels at Days 2-5 and 9. For the deiodinase enzymes, deiodinase-1 (Dio1) expression levels were highest at Days 2-3 and 7-11, levels of deiodinase-2 (Dio2) were highest at Days 7-11, and levels of deiodinase-3 (Dio3) were highest at Days 1-5. Vegfa, a gene involved in cardiovascular development, had levels of gene expression that were highest at days 7-11. HuC, a gene involved in neurological development, had the highest level of gene expression at days 7-11. When the level of expression of these genes is highest is when they have the greatest potential to be used in toxicity tests to measure alterations in expression.