Filter and Sort







BIOL2017REID49164 BIOL

Testing the specificity and cytotoxicity of biotin-ferrocene derivatives on cancer cells

Type: Undergraduate
Author(s): Eric Reid Biology
Advisor(s): Giridhar Akkaraju Biology

Cancer is the second-leading cause of death in the US. Cancer cells are characterized by loss of regulation of the cell cycle that results in uncontrolled proliferation. To drive this high rate of cellular division, cancer cells have mutated to increase uptake of important nutrients including glucose and vitamins by increasing the number of glucose receptors and vitamin transporters, including biotin receptor, on their surface. Due to this difference in expression of biotin receptor between cancer and normal cells, research focusing on the use of biotin-conjugated molecules has gained attention as a method for anticancer drug delivery.
Another characteristic unique to certain cancer cells is that they exhibit dysregulation in normal cellular redox balance, such that the cellular environment becomes more reducing. A more reducing environment favors the generation of reactive oxygen species (ROS). Many metal-based anticancer drugs have taken advantage of this feature of cancer cells in an attempt to increase the levels of ROS to the point that harmful oxidation reactions occur that lead to cell death. Specifically, the iron atom of ferrocene has been shown to lead to the generation of damaging ROS upon oxidation from Fe2+ to Fe3+.
A problem with current cancer treatment is that the chemotherapeutics often are not specific to cancer cells and can lead to negative side effects. As a result, anticancer drugs with high specificity and cytotoxicity are needed to improve treatments. This research project focuses on testing the cytotoxicity of a variety of biotin-ferrocene derivatives on cancer (HeLa) and non-cancer (293HEK) cell lines. HeLa cells are known to express high levels of biotin receptor and are predicted to have more reducing cellular environments; additionally, 293HEK cells express low levels of biotin receptor and are predicted to have less reducing environments. The tested compounds have three main features: a biotin moiety, a ferrocene core, and a variable linker covalently bound to the ferrocene moiety. We hypothesize that the biotin-containing compounds will enter HeLa cells more efficiently than 293HEK cells, allowing for the ferrocene moiety to reduce oxygen, leading to increased ROS generation and cell death.
Here, we demonstrate that ferrocene shows dose-dependent cytotoxicity specific to HeLa cells, while one of the compounds shows dose-dependent cytotoxicity specific to 293HEK cells. Interestingly, two of the compounds show dose-dependent cytotoxicity to both cell lines. These findings are particularly intriguing in that there appears to be a difference in specificity between some of the compounds. However, future studies are required to reveal how these differences in cytotoxicity are related to the differences in chemical moieties and by what mechanisms these compounds are acting to cause specific cytotoxicity.

View Presentation

BIOL2017ROGERS62924 BIOL

Prey preference in the carnivorous pitcher plant, Sarracenia alata

Type: Undergraduate
Author(s): Lauren Rogers Biology Caleb Smack Biology
Advisor(s): John Horner Biology

Most plants acquire mineral nutrients from the soil. However, in nutrient-poor environments, some plants have evolved carnivorous traits that allow them to obtain nutrients by capturing and digesting insects. For example, the carnivorous pitcher plant Sarracenia alata uses passive pitfall traps to capture their insect prey. Although studies have examined prey composition for S. alata, few have included a comparison to the insects available in the environment. The purpose of this study was to compare prey capture of S. alata pitchers with the available insects to determine whether this species is selective in prey capture. The available insects were sampled using artificial sticky traps in the vicinity of the pitchers. The insects in the study were identified first to the level of order and then further identified to “morphospecies” as a means of examining preference on a finer scale. The results show that the pitchers captured only a subset of the available insects. The average number of orders captured by each pitcher (1.8 ± 1.0 SD) was lower than that captured by artificial traps (2.8 ± 0.5). Likewise, the average number of morphospecies captured by the pitchers (4.5 ± 4.8) was lower than that captured by the artificial traps (6.8 ± 3.5). These results support the hypothesis that S. alata is selective in its prey capture, but further studies are needed with different methods of measuring the available insects in order to avoid potential bias.

View Presentation

BIOL2017SHOWALTER44690 BIOL

Measuring Associations Between Polymorphisms in the GREB1L Gene and the Development of Different Migratory Phenotypes in Oncorhynchus mykiss

Type: Undergraduate
Author(s): Ben Showalter Biology
Advisor(s): Matthew Hale Biology

Rainbow trout, Oncorhynchus mykiss, exhibit two life-history strategies: resident rainbow trout and migratory steelhead trout. Previous research has shown that the migratory decision is highly heritable. Recently, interest has focused on the GREB1L gene as studies in several populations of rainbow trout have found alleles associated with migration. This project aimed to measure allelic associations between GREB1L and migratory life-history in rainbow trout from Sashin Creek, Alaska. Sequence data suggests that all individuals, regardless of migratory trajectory, had alleles associated with migration. These results confirm that there are population specific genetic effects that determine the migratory life-history of rainbow trout.

View Presentation

BIOL2017SILVA23354 BIOL

The Comparison of Herbivory Damage on Red and Green Leaves in a Neotropical Rainforest

Type: Undergraduate
Author(s): Kristen Silva Biology Amal Khan Biology
Advisor(s): Dean Williams Biology Amanda Hale Biology Michael Misamore Biology

A distinctive feature in many tropical trees is the presence of red young leaves which turn green with maturity. Some theories as to why the young leaves are red is because it could signal to herbivores that the young leaf is full of toxins, or that it is low in nutrients. During a spring break trip to the TCU Field Station in Costa Rica we tested the hypothesis that green leaves have more herbivory damage than red ones. Fifteen trees were randomly sampled in the secondary forest. All the leaves were counted on the selected trees and we recorded the total number of both red and green leaves and then how many leaves of each color had herbivore damage. We then analyzed the ratio of damaged red and green leaves to determine if red leaves are predated on less than green leaves. This will help us understand if this means that red leaves have a natural defense against herbivory.

View Presentation

BIOL2017UPTON46847 BIOL

DNA Barcoding Insect Species for Texas Horned Lizard Diet Analysis

Type: Undergraduate
Author(s): Kaitlyn Upton Biology
Advisor(s): Dean Williams Biology

The Texas horned lizard (Phrynosoma cornutum) is a threatened species in the state of Texas whose main dietary staple is believed to be the harvester ant (Pogonomyrmex spp.). In two South Texas towns horned lizards are consuming many ants and termites other than harvester ants and so we developed DNA barcoding methodology to help identify these taxa in the DNA extracted from horned lizard feces. We used a small portion of the mitochondrial cytochrome oxidase I gene to confirm morphological identifications and to identify ants and termites to the species level from horned lizard scat.

View Presentation