BIOL2017ROGERS62924 BIOL
Type: Undergraduate
Author(s):
Lauren Rogers
Biology
Caleb Smack
Biology
Advisor(s):
John Horner
Biology
View PresentationMost plants acquire mineral nutrients from the soil. However, in nutrient-poor environments, some plants have evolved carnivorous traits that allow them to obtain nutrients by capturing and digesting insects. For example, the carnivorous pitcher plant Sarracenia alata uses passive pitfall traps to capture their insect prey. Although studies have examined prey composition for S. alata, few have included a comparison to the insects available in the environment. The purpose of this study was to compare prey capture of S. alata pitchers with the available insects to determine whether this species is selective in prey capture. The available insects were sampled using artificial sticky traps in the vicinity of the pitchers. The insects in the study were identified first to the level of order and then further identified to “morphospecies” as a means of examining preference on a finer scale. The results show that the pitchers captured only a subset of the available insects. The average number of orders captured by each pitcher (1.8 ± 1.0 SD) was lower than that captured by artificial traps (2.8 ± 0.5). Likewise, the average number of morphospecies captured by the pitchers (4.5 ± 4.8) was lower than that captured by the artificial traps (6.8 ± 3.5). These results support the hypothesis that S. alata is selective in its prey capture, but further studies are needed with different methods of measuring the available insects in order to avoid potential bias.
BIOL2017SHOWALTER44690 BIOL
Type: Undergraduate
Author(s):
Ben Showalter
Biology
Advisor(s):
Matthew Hale
Biology
View PresentationRainbow trout, Oncorhynchus mykiss, exhibit two life-history strategies: resident rainbow trout and migratory steelhead trout. Previous research has shown that the migratory decision is highly heritable. Recently, interest has focused on the GREB1L gene as studies in several populations of rainbow trout have found alleles associated with migration. This project aimed to measure allelic associations between GREB1L and migratory life-history in rainbow trout from Sashin Creek, Alaska. Sequence data suggests that all individuals, regardless of migratory trajectory, had alleles associated with migration. These results confirm that there are population specific genetic effects that determine the migratory life-history of rainbow trout.
BIOL2017SILVA23354 BIOL
Type: Undergraduate
Author(s):
Kristen Silva
Biology
Amal Khan
Biology
Advisor(s):
Dean Williams
Biology
Amanda Hale
Biology
Michael Misamore
Biology
View PresentationA distinctive feature in many tropical trees is the presence of red young leaves which turn green with maturity. Some theories as to why the young leaves are red is because it could signal to herbivores that the young leaf is full of toxins, or that it is low in nutrients. During a spring break trip to the TCU Field Station in Costa Rica we tested the hypothesis that green leaves have more herbivory damage than red ones. Fifteen trees were randomly sampled in the secondary forest. All the leaves were counted on the selected trees and we recorded the total number of both red and green leaves and then how many leaves of each color had herbivore damage. We then analyzed the ratio of damaged red and green leaves to determine if red leaves are predated on less than green leaves. This will help us understand if this means that red leaves have a natural defense against herbivory.
BIOL2017UPTON46847 BIOL
Type: Undergraduate
Author(s):
Kaitlyn Upton
Biology
Advisor(s):
Dean Williams
Biology
View PresentationThe Texas horned lizard (Phrynosoma cornutum) is a threatened species in the state of Texas whose main dietary staple is believed to be the harvester ant (Pogonomyrmex spp.). In two South Texas towns horned lizards are consuming many ants and termites other than harvester ants and so we developed DNA barcoding methodology to help identify these taxa in the DNA extracted from horned lizard feces. We used a small portion of the mitochondrial cytochrome oxidase I gene to confirm morphological identifications and to identify ants and termites to the species level from horned lizard scat.
BIOL2017WEST17441 BIOL
Type: Undergraduate
Author(s):
Julianna West
Biology
Bobby Boone
Biology
Troy Marshall
Biology
Julianna Martinez
Biology
Advisor(s):
Amanda Hale
Biology
View PresentationEuglossine, or Orchid bees, belong to a monophyletic clade of neotropical bees and are specialized pollinators for orchids in the neotropics. Orchid bees are used to study the effects of deforestation and pollination patterns because the males collect fragrances, and therefore by using scents, can be tracked and counted throughout a habitat. Because previous research has shown that scent preference and orchid bee diversity varies across different habitats, we wanted to compare the abundance and diversity of euglossine bees in a forest edge, a secondary forest, and a primary forest near San Ramón, Costa Rica. By placing different scents on filter papers, we counted and identified the number of bees attracted to each scent. We found a variation in scent preference and species diversity across the different forest types. At a forest edge, more bees were attracted to eugenol, while in the secondary forest, most bees preferred cineole. Methyl salicylate was the scent preferred in the primary forest. Scent preference also varied between different species and species diversity was different between the habitat types. While Eulaema meriana was common in both habitats, E. meriana was observed more frequently in the forest edge, while Euglossa imperialis was not seen in the forest edge and was more abundant in the secondary forest and the primary forest. These findings indicate that changes in habitat type and forest structure can impact orchid bee diversity, thus affecting the tropical ecosystem.