GEOL2025MAXWELL16171 GEOL
Type: Undergraduate
Author(s):
Emma Maxwell
Geological Sciences
Emily Garza
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: SecondFloor, Table 1, Position 3, 11:30-1:30
View PresentationThis project will analyze the relationship between land cover in Texas coastal counties and dissolved oxygen levels in the Gulf of Mexico. Utilizing GIS, we aim to understand land cover changes in Texas coastal counties from 2021 to 2023 and corresponding changes in dissolved oxygen levels in the Gulf of Mexico during this time frame. The analysis will examine spatial data from the Gulf of Mexico and Texas, focusing on urban areas, agricultural land, coastal wetlands, and freshwater wetlands.
GEOL2025MORENO16545 GEOL
Type: Undergraduate
Author(s):
Isabella Moreno
Environmental Sciences
Garrison Kelly
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Third Floor, Table 10, Position 2, 1:45-3:45
View Presentation
GEOL2025PYLE3352 GEOL
Type: Undergraduate
Author(s):
Tabby Pyle
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Third Floor, Table 7, Position 1, 1:45-3:45
View PresentationThis study aims to use chemodynamics to engage the interplay between societal actions and environmental response. The project will build upon data from thermogravimetric and isotopic analysis capturing macroscopic soil chemodynamics in response to suburbanization in the Dallas-Fort Worth Metroplex (DFW). The DFW is one of the fastest growing metro areas in the US. Our early data suggests that a minimum of 30-yrs is the required period of lawn care before key chemodynamic indicators of soil health/resilience, such as R50 and isotope 13C (quantity and quality, is needed for lawns to return to their pre-suburbanization environmental status.
The objective is to examine implications at the microphysical and molecular-level via: Assessing how differences in the molecular composition of soil organic matter from a suburban lawn changes over time.
GEOL2025SINNETT43015 GEOL
Type: Undergraduate
Author(s):
Audrey Sinnett
Environmental Sciences
West Tyndal
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: FirstFloor, Table 2, Position 2, 1:45-3:45
View PresentationWe propose a GIS project analyzing waste disposal accessibility by comparing recycling quality between low-income and high-income neighborhoods. Using spatial analysis and field data, we will compare the amount of waste generated to the income of Los Angeles counties, and document any trends. The findings will provide insights into potential disparities in waste management services and inform policy recommendations for improving recycling programs in underserved communities.
GEOL2025SKILES9684 GEOL
Type: Undergraduate
Author(s):
Elise Skiles
Environmental Sciences
Christopher Zamora
Chemistry & Biochemistry
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: SecondFloor, Table 5, Position 2, 11:30-1:30
(Presentation is private)The purpose of this project is to determine if California's raging wildfires are having a detrimental effect on the state’s tree populations/health. Two main components of this project would be, a model of California's tree density/canopy cover in 1990, and a model of California’s tree density/canopy cover in 2020. The goal of this project is to determine if an increase in wildfires is a key factor in the decrease of California tree density, and if so, make recommendations for further research on how to protect trees from this natural disaster.