Filter and Sort







BIOL2018STEVENS39164 BIOL

Creating Habitat Maps for Avian Communities Using LIDAR

Type: Graduate
Author(s): Thomas Stevens Biology
Advisor(s): Amanda Hale Biology Tammie Morgan Environmental Sciences Dean Williams Biology

Habitat maps derived from remotely sensed data are strong predictors of wildlife distributions, outperforming traditional on the ground vegetation structure surveys. Texas Parks and Wildlife created a statewide habitat map in 2014 featuring 398 vegetation classes to 10-meter resolution. The Great Trinity Forest is the largest urban forest in the United States, with 3,000 continuous hectares within the city of Dallas. As part of our wider study of the forest’s wildlife, we edited Texas Parks and Wildlife’s habitat to more accurately and meaningfully reflect habitat distinctions in the Great Trinity Forest. First we adjusted the locations and boundaries of waterways to reflect changes in their location over the past four years. Then we reclassified the bottomland hardwood forest habitat type (BHF) to reflect different succession stages of forest growth. Using LIDAR and aerial images we calculated canopy heights and reclassified BHF using those heights as primary BHF, secondary BHF, or early successional bottomlands.

View Presentation

BIOL2018THALHUBER4191 BIOL

Hot Spot Analysis of Mercury Contamination of Nestling Red-winged Blackbirds

Type: Graduate
Author(s): Thomas Thalhuber Biology
Advisor(s): Ray Drenner Biology Matthew Chumchal Biology

Methylmercury (MeHg) is an environmental contaminant that can have adverse effects on wildlife. Because inorganic Hg is converted to MeHg primarily in aquatic ecosystems, studies of MeHg contamination of food webs have historically focused on aquatic organisms. However, recent studies have found that emergent aquatic insects (e.g. mayflies and dragonflies) can transport MeHg to terrestrial predators like songbirds, and this could have implications for species in decline such as Red-winged blackbirds (Agelaius phoeniceus). Red-winged blackbirds are odonate (dragonflies and damselflies) predators, and odonates can make up 50 – 90% of a Red-winged blackbird’s diet during the breeding season. Red-winged blackbirds have declined throughout their range by 30% over the last 50 years. Their decline is due in part to loss of wetland habitat, but the consumption of MeHg contaminated prey items could also be having an effect. Several studies have reported MeHg contamination of Red-winged blackbirds, and yet, the potential effect of diet on MeHg contamination in Red-winged blackbirds has not been studied. I collected data on blood MeHg level of Red-winged blackbird nestlings and the emergence rate of odonates during the summer of 2017 at the Eagle Mountain Hatchery Experimental Pond Facility in Tarrant County, Texas. I used the ArcGIS Space Time Cube to identify spatiotemporal hot spots of nestling MeHg level and odonate emergence, and I used linear regression models to see how well proximity to odonate emergence hotspots predicted nestling MeHg hotspots.

View Presentation

BIOL2018TRULY22989 BIOL

Design and Testing of Organometallic, Targeting Anticancer Drugs

Type: Undergraduate
Author(s): Tate Truly Biology Dr. Giridhar Akkaraju Biology Marianne Burnett Chemistry & Biochemistry Dr. Kayla Green Chemistry & Biochemistry
Advisor(s): Giridhar Akkaraju Biology

Cancer is the second leading cause of death and will directly affect approximately 40% of the people in the United States over the course of their life. Chemotherapy has been shown to be an effective therapeutic strategy, but it lacks specificity, resulting in a multitude of negative side effects. Targeted therapies such as Herceptin, Iressa, and Nivolumab have shown increased effectiveness against cancer by attacking specific molecules in the target cell. For example, Herceptin inhibits the HER2 protein, which is overproduced in some breast cancer cells, and stops cell division. Biotin is an innate coenzyme for carbohydrate, lipid and protein metabolism. Certain cancer types overexpress biotin transporters on the surface of each cancer cell in order to increase biotin absorption necessary for metabolic processes. Furthermore, the intracellular environment in cancer cells is more reducing compared to non-cancer cells due to increased metabolism. Ferrocene is an iron-based organometallic molecule that has been shown to generate reactive oxygen species (ROS) in the reducing environment of cancer cells. Given that certain cancer cells absorb biotin with a higher efficiency, we hypothesize that linking biotin to ferrocene will increase the efficiency of ferrocene entering the cell and result in selective cancer cell death. Therefore, we have produced a library of biotin-ferrocene conjugates to selectively target cancer cell lines that over express biotin receptor sites. Experiments were conducted utilizing ferrocene and a variety of ferrocene-biotin conjugates (C1, C2, 2) in both cancer (MCF-7) and noncancer (HEK 293) cell lines in order to compare the relative toxicity between compounds.

View Presentation

BIOL2018WEINSTEIN16743 BIOL

Should I stay or should I go? Analyzing the genetic basis of migration-related traits in rainbow trout (Oncorhynchus mykiss).

Type: Graduate
Author(s): Spencer Weinstein Biology Matthew Hale Biology
Advisor(s): Matthew Hale Biology

Many rainbow trout (Oncorhynchus mykiss) populations exhibit partial migration, where resident and migrant individuals coexist in a single population. Due to anthropogenic, environmental, and population-specific factors, migratory individuals have been decreasing in frequency across the continental United States. Biologically, whether an individual will migrate is determined by both genetic and environmental factors. Although migration in many salmonids is known to be highly heritable, the environment plays an overriding role. Previous studies investigating the genetic basis of migration have failed to control for environmental variance and, consequently, the genes and regions of the genome underlying the development of the migratory phenotype remain unknown. We used data from a common garden experiment to identify single nucleotide polymorphisms (SNPs) significantly associated with migration in the F1 generation of a resident-by-resident and a migrant-by-migrant cross. We genotyped 192 F1 individuals on an Affymetrix SNP chip at 57,501 known polymorphic locations throughout the genome. We identified 5002 significant SNPs in the migrant-by-migrant family and 429 significant SNPs in the resident-by-resident family, using an FDR-corrected p-value of 0.01. For the migrant cross, we located significant markers associated with 28 genes whose functions are connected to pathways previously hypothesized to be important in migration. Five genes on three chromosomes were associated with migration in both familial crosses, suggesting that these regions are important in determining life history regardless of familial origin in this population. These data will be further used to develop a model to predict life history in individuals that are yet to make that determination. Understanding the genetic factors involved in the decision to migrate, through the identification of polymorphisms associated with migration, will assist fisheries managers in restoring and maintaining migratory rainbow trout populations.

View Presentation

BIOL2018YATES4553 BIOL

The Beetle Invasion of the Texas Horned Lizard's (P. cornutum) Diet

Type: Undergraduate
Author(s): Jessica Yates Biology Rachel Alenius Biology Dean Williams Biology
Advisor(s): Dean Williams Biology

The Texas horned lizard (Phrynosoma cornutum) has always been believed to be an ant specialist, especially on harvester ants. However, a population of horned lizards in south Texas seem to have a more diverse diet consisting of other insects and arachnids. The goal of this project is to build a DNA library of order Coleoptera (beetles) that are preyed upon by these horned lizards. This DNA library will be compared to DNA extracted from horned lizard scat so that we can identify which species of beetles these lizards are eating. For this process, I isolated DNA from 244 beetles collected in pit fall traps from Kenedy and Karnes City, amplified the cytochrome oxidase I (COI) gene, and sequenced it. I compared the processed sequences to those available on GenBank and BOLD (Barcode of Life Database) to identify the species of beetle.

View Presentation

CHEM2018BARNETT5923 CHEM

Spectroscopic assays of a novel neurodegenerative therapeutic agent

Type: Undergraduate
Author(s): Maddie Barnett Chemistry & Biochemistry Hannah Johnston Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry

Oxidative stress in the brain is a known contributor to the development of neurodegenerative diseases, including Alzheimer’s. The focus of this project is to target the amyloid-β plaque formations and reactive oxygen species (ROS) derived from mis-regulated metal-ions that lead to disease-causing oxidative stress. The present investigation measures both the antioxidant reactivity and metal chelating ability of 1,4,11,13-tetra-aza-bis(2,6-pyridinophane)-8,17-ol (L4).  L4 contains two radical scavenging pyridol groups along with a metal-binding nitrogen rich ligand system.  It was hypothesized that increasing the number of pyridol groups on the ligands in our small molecule library would increase the radical scavenging activity, which in turn may provide cells protection from oxidative stress.  The radical scavenging ability of L4 was quantified using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. This was compared to other radical scavenging small molecules to evaluate the effect of the additional radical scavenging group on the antioxidant activity.  The interaction of L4 with redox active metal-ions such as copper(II) was also evaluated using the coumarin-3-carboxylic acid (CCA) assay to show the molecule’s ability to target mis-regulated metal-ions in diseased tissues. With the end goal being to develop a potential biological therapeutic agent, metabolic stability studies were also performed.

(Presentation is private)

CHEM2018BODIFORD8780 CHEM

Drug delivery and degradation behavior of nanostructured porous silicon and polycaprolactone porous fiber composites

Type: Graduate
Author(s): Nelli Bodiford Chemistry & Biochemistry Steven McInnes Chemistry & Biochemistry Nathan Shurtleff Chemistry & Biochemistry Nicolas Voelcker Chemistry & Biochemistry
Advisor(s): Jeffery Coffer Chemistry & Biochemistry

The combination of inorganic porous silicon (pSi) and flexible biocompatible polymers has been shown to yield more beneficial hybrid scaffolds for tissue engineering (i.e. use of synthetic materials to facilitate healing). PSi has a variety of tunable properties, including pore size, pore volume and non-toxic degradation. The addition of a biocompatible polymer such as polycaprolactone (PCL) can provide control over shape and serve as an additional drug delivery component.
In this work, composite materials consisting of oxidized porous silicon (ox-pSi) with a particle size of ~ 30 μm and pore size of 40-100 nm and PCL porous fibers. Porous fibers were fabricated using an electrospinning method into sheets of desired thickness (0.1-0.4 mm), fiber diameter 3-4 μm, and fiber pore size 300-500 nm. Ox-pSi particles previously loaded with the anticancer drug-camptothecin (CPT) were placed between two sheets (6 mm in diameter each) and sealed at the edges, resulting in ~65% loading of ox-pSi. Drug release from the ox-pSi particles alone and ox-pSi/porous PCL fiber composites was monitored fluorometrically in phosphate buffered saline (PBS), showing a distinct release profile for each material.
Ox-pSi/p-PCL fiber composites release a CPT payload in accordance with the Higuchi release model and showed a significant decrease in burst effect compared to ox-pSi particles only. In addition, composite evolution after 5 weeks in PBS at 37 oC was examined using gravimetry, differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). Overall weight loss of the composites was about 50%, mainly attributed to pSi particles dissolution and some polymer hydrolysis. Preliminary DSC results show that high surface area porous PCL fibers are less crystalline compared to solid PCL fibers, suggesting a faster hydrolysis route.

(Presentation is private)

CHEM2018BURNETT36214 CHEM

Non-Innocent redox activity of the glycine modified DOTA scaffold and the impact on Eu3+/2+ electrochemistry

Type: Graduate
Author(s): Marianne Burnett Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry

Europium contrast agents have been extensively investigated as an alternative to typical Gd3+ species for imaging. This is due to the dual imaging modalities which can accessed dependent on the oxidation state of the europium metal center (T1 or PARACEST). To achieve these functionalities, the europium containing complex must be stable enough to support both oxidation states (+3 and +2). In collaboration with UTSW, an electrochemical investigation was completed to understand the effects of the ligand environment on the metal center as a direct result of glycine modification to the ligand scaffold, DOTA. Increasing amide functionalities in close proximity to the europium core result in a positive shift in the potential in comparison to the acetate arms associated with DOTA. Furthermore, the addition of the glycine moiety to the pendant arms results in redox activity of the ligand itself, making the ligand non-innocent in nature. Additionally, a crystal structure of Eu4 (the tetraglycinate DOTA derivative) was obtained and compared to known lanthanide complexes.

(Presentation is private)

CHEM2018CIEKER32577 CHEM

EN ROUTE TO DESIGNER MEDIA: synthetic and spectroscopic studies on ionic and eutectic solvents

Type: Undergraduate
Author(s): Chris Cieker Chemistry & Biochemistry Marlius Castillo Chemistry & Biochemistry David Edwards Chemistry & Biochemistry Nico Prieto Chemistry & Biochemistry
Advisor(s): Sergei Dzyuba Chemistry & Biochemistry

Non-conventional solvents, such as room-temperature ionic liquids and deep-eutectic solvents, have attracted a lot of attention in recent years due their diverse applications in various areas of sciences, medicine and engineering. The ability to control physical properties of these solvents by simply adjusting their structure and/or the ratio of the components favorably distinguishes ionic and eutectic solvents from traditionally used molecular solvents as it allows to custom design specific types of media for given applications.

This presentation will highlight our efforts on various aspects of the synthesis of ionic liquids and deep-eutectic solvents as well as it will describe our investigations on the physical properties and nanostructural organization of these liquids using environmental probes, such as those that feature BODIPY and aza-BODIPY motifs. In addition, our initial studies on the design of multiphase systems that utilize ionic, eutectic and molecular solvents will be presented.

(Presentation is private)

CHEM2018DACHILLE23489 CHEM

Synthesis and Characterization of Europium-doped Cerium Oxide Nanotubes

Type: Graduate
Author(s): Anne D'Achille Chemistry & Biochemistry Jeff Coffer Chemistry & Biochemistry
Advisor(s): Jeff Coffer Chemistry & Biochemistry

Cerium (IV) oxide, or CeO2, nanomaterials have displayed antioxidant and enzyme mimetic activities due to a Ce3+/Ce4+ redox capability enhanced through oxygen vacancies and mobility. Tri-valent, fluorescent ions such as Eu3+ increase the Ce3+/Ce4+ ratio and oxygen vacancy concentration, while contributing fluorescent properties to the nanomaterial. The combination of these attributes make europium doped cerium oxide (EuCeO¬2) nanomaterials appealing candidates for various biological applications.
To complement our earlier efforts on the synthesis and properties of EuCeO2 nanowires, nanorods, and nanocubes, this presentation addresses a new, complementary structure, EuCeO2 nanotubes. The nanotubes are prepared via deposition and subsequent oxidation of Eu-doped Ce(OH)3 to form a EuCeO2 shell on sacrificial ZnO nanowires.
Previous synthetic routes to CeO2 nanotubes have been reported featuring carbon nanotubes as sacrificial templates, the etching of cerium-based nanorods, and other less-common methods . These routes have struggled with clear evidence for distinct nanotube formation, as well as control over nanotube dimensions. Our use of a ZnO core allows for facile manipulation of inner diameter and length of the nanotube following etching of the core.
The synthesized nanotubes were characterized using scanning and transmission microscopy (SEM and TEM) for morphology, energy dispersive x-ray (EDX) for elemental composition, and photoluminescence to track europium fluorescence. Synthesized nanotubes had inner diameters from 40 nm to 200 nm, based on the ZnO core. Following synthesis and characterization, the nanotubes will be tested for use as a drug delivery vector, using ibuprofen as a model.

(Presentation is private)