GEOL2021BEZUCHA53710 GEOL
Type: Graduate
Author(s):
Blake Bezucha
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
Esayas Gebremichael
Geological Sciences
Location: Zoom Room 5, 12:54 PM
(Presentation is private)The Louisiana coast is prone to power tropical storm systems, known as hurricanes, which commonly cause significant damage to the environment and financial infrastructure in coastal states, such as Louisiana. Using landsat data acquired from the USGS, determining land cover degradation from seasonal low-pressure storms that span different decades can be made possible. This GIS-based study also takes into account elevation models (DEMs) to provide an accurate portrayal of how coastal vegetation influences the impact of these storms, as well as how storm intensity influences the morphology of coastlines.
GEOL2021BURDEN31487 GEOL
Type: Graduate
Author(s):
Lauren Burden
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Zoom Room 2, 12:30 PM
(Presentation is private)Hawaii’s most active volcano, Kilauea, poses many threats to the surrounding infrastructure of the Big Island. Surface deformation from eruptions and underground magma tunnels have produced a growing lava lake within the Eastern Rift Zone, located on the Southeast tip of the island, since 2018. Using remote sensing techniques and GIS, I will use recent data collected from Kilauea’s eruptions and Halema’uma’u lava lake to create a volcanic hazards map of the region. A volcanic hazards map gives us insight to where the safest place are to inhabit on the surface of the island.
GEOL2021DAVIDSON54280 GEOL
Type: Graduate
Author(s):
Josh Davidson
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Zoom Room 4, 02:23 PM
(Presentation is private)There are many major geologic units that outcrop in various regions of the Dallas-Fort Worth metroplex. A major unit that will be discussed in the current study is the Eagleford Shale. Previous studies have generated geologic maps that illustrate where this unit crops-out within the study region. The goal of this study is to create a modern geologic hazard zonation map of the Dallas-Fort Worth metroplex focusing on areas where the Eagleford crops-out. On this map, I will include the spatial distribution of discovered Eagleford outcrop locations and will integrate photographs that illustrate the stratigraphy of this formations using GIS.
Subsequently, I will use the map to calculate the area of all Eagleford surficial deposits within the study region. This shale is a mudrock that is primarily made up of soft-sediments and clays and can pose a geological hazard where it reaches the surface due to shrinking and swelling. This can cause major foundation issues to infrastructure that is built on this unit. Therefore, this map can be used for the purpose of taking precautionary measures when planning the construction of new buildings and road networks within the Dallas-Fort Worth metroplex.
GEOL2021DAVIDSON56975 GEOL
Type: Graduate
Author(s):
Josh Davidson
Geological Sciences
Advisor(s):
Richard Denne
Geological Sciences
Location: Zoom Room 5, 02:15 PM
View PresentationThe Lower Cenomanian Maness Shale is an argillaceous mudrock that occurs between the Buda Limestone and Woodbine Sandstone in the East Texas Field, and was originally placed within the Washita Group based on its biostratigraphy. It regionally extends throughout the East Texas Basin in tandem with the overlying Woodbine Group and displays considerable thickness and facies variations. The Maness interval is significant because previous studies indicate that it may be a hydrocarbon source rock.
Although this mudrock has been studied for several decades, the sediment source of the Maness remains in question. Prior studies have indicated that the sediment comprising the Maness could have come from multiple sources, one of them being the southern side of the Sabine Uplift. In the current study, I will correlate well logs through the south side of the Sabine Uplift from Polk and Tyler counties through Rusk county. I will then generate an isopach map of the study area and will compare thickness trends to those shown on the composite isopach map constructed by English (2020). Lastly, I will examine a core from Tyler or Polk counties that could potentially reveal clastic sandstones occurring within the Maness. The findings will be used to test my hypothesis that the Maness Shale is sourced from the southern portion of the Sabine Uplift.
GEOL2021FREIMUTH19470 GEOL
Type: Graduate
Author(s):
Clayton Freimuth
Geological Sciences
Advisor(s):
Helge Alsleben
Geological Sciences
Location: Zoom Room 3, 01:26 PM
View PresentationHardness, defined as resistance to surface deformation, is an intrinsic property of all materials including sedimentary rocks. The variables responsible for a sedimentary rock’s hardness are not completely understood. By understanding which variables control hardness, we may gain a better understanding of related rock strength. Rock strength, defined as a rock’s resistance to plastic deformation under loading, is an important parameter for many industries such as mining, civil engineering, and hydrocarbon exploration.
Numerous tests such as triaxial tests or uniaxial tests are used to quantify rock strength, but are often expensive, time consuming, or require substantial investment in laboratory setup. To circumvent these issues, other devices have been employed to determine rock strength. For example, the Proceq Equotip Bambino micro-rebound hammer (Bambino) has been used for decades to test the hardness of materials such as concrete, steel, and ceramics. These hardness values have been used to determine material strength. Selected studies on rocks empirically correlate between Bambino-derived hardness value (called Leeb hardness) and uniaxial compressive strength (UCS). However, significant scatter in the data suggest that certain intrinsic (e.g., density, bulk mineralogy, etc.) or extrinsic factors (e.g., sample volume, surface the sample rests on) need to be considered for a better correlation.
In this study, I examined the relations between Leeb hardness and UCS values, while examining lithologic variations and other properties such as bulk mineralogy, water loss, volume, density, and effective porosity. I found that bulk mineralogy, density, effective porosity, and water content correlated with a sample’s mechanical hardness. Also, a sample’s UCS is related to its density, effective porosity, and mechanical hardness. Ultimately, these data validated previous studies and shed new insight on the controlling properties of a rock’s hardness and strength.