Filter and Sort







GEOL2021MANZI12370 GEOL

Organic nanomaterials-ferrihydrite interactions

Type: Graduate
Author(s): Aurore Manzi Geological Sciences
Advisor(s): Omar Harvey Geological Sciences
Location: Zoom Room 2, 03:43 PM

Nanomaterials are the new technologies reforming industrial activities. They are used to improve energy efficiency and storage, to cheaply store and process information in every internet server and personal computer, to facilitate bio-imaging and drug delivery, and in environmental remediation. These materials’ nanometric dimension, 1/100000 the width of a human hair, allows them to have novel characteristics such as strength, electrical resistivity, and conductivity, and optical absorption compared to the same materials in bigger sizes. Due to their widespread and incorporation into consumer products, it is important to understand their interactions with other elements in the environment. I used flow experiments, to understand the effects of the core and terminal groups chemistries of 3 sets of nanomaterials on their interaction with ferrihydrite, a very common and reactive mineral in the environment. The nanomaterials used in this study, namely Graphene Quantum Dot (GQD), PAMAM G4-OH, and PAMAM G3.5-COOH, have comparable sizes, 6nm, 4.5 nm, and 3.5 nm, respectively. When the experiments were conducted under acidic and circumneutral pH, the quantities of GQD and PAMAM G4-OH sorbed were equivalent and less than the quantity of PAMAM G3.5-COOH sorbed. In my presentation, I will go over the quantities and kinetics results from the interactions of the 3 sets of nanomaterials onto ferrihydrite over environmentally significant pH values (range 3-10).

View Presentation

GEOL2021MANZI34816 GEOL

Remote sensing of geothermal potential: Rwanda

Type: Graduate
Author(s): Aurore Manzi Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Zoom Room 1, 12:30 PM

Land surface temperature is a major factor used in the assessment and understanding of several processes including global climate, hydrological, geo-/biophysical, urban land use/land cover (Avdan and Jovanovska, 2016). Since the Soviet Union launched the world's first artificial satellite, Sputnik 1, in 1957 there have been about 8,900 satellites from more than 40 countries launched in space that have opened possibilities to understand the earth using remote sensing. Specifically, LANDSAT 8’s thermal infrared sensor Band 10 data has been successfully used to map land surface temperature. The specific algorithm used to derive land surface temperature from LANDSAT 8’s thermal infrared sensor Band 10 showed standard deviations of 2.4°C and 2.7°C on the first trial and second trial respectively (Avdan and Jovanovska, 2016). In my project, I used land surface temperature in addition to secondary data (geologic features, volcanoes, faults, change in cities' extents) to locate and deduce the potential geothermal plays in Rwanda. I also compared the potential geothermal plays obtained using remote sensing to those obtained using ground measurements to assess how accurate remote sensing tools are in determining geothermal plays.

View Presentation

GEOL2021MCLAIN19804 GEOL

Volcanic risk assessment of Mount Rainier using GIS methods

Type: Graduate
Author(s): Guthrie McLain Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Zoom Room 2, 01:58 PM

Mount Rainier is a stratovolcano within the Cascade Arc situated southeast of the cities of Seattle and Tacoma. This region of Washington has undergone substantial population growth while being situated in the shadow of a large stratovolcano. Historically lahar flows, volcanoclastic debris flows, from the volcano have reached as far as Tacoma and could still pose a risk to Seattle and other smaller communities. Seismicity and annual precipitation are large contributors into predicting an eruption event as well as eruption severity. Using ArcGIS Pro and implementing various types of data including historic lahar deposit extent, population growth, seismic activity, and other contributions that can peer into a future volcanic eruption, it can be possible to assess the volcanic hazard Mount Rainier poses on nearby communities.

(Presentation is private)

PHYS2021CAMPBELL9090 PHYS

Nitrogen-Doped Graphene Quantum Dot Formulation for Cancer Imaging and Redox-Based Drug Delivery

Type: Graduate
Author(s): Elizabeth Campbell Physics & Astronomy Giridhar Akkaraju Biology Roberto Gonzalez-Rodriguez Chemistry & Biochemistry Kayla Green Chemistry & Biochemistry Md. Tanvir Hasan Physics & Astronomy Bong Lee Physics & Astronomy Tate Truly Biology
Advisor(s): Anton Naumov Physics & Astronomy
Location: Zoom Room 1, 01:10 PM

Treatment of complex conditions, such as cancer, has been substantially advanced by a field of molecular therapeutics. However, many of these therapies are limited by the dose toxicity and lack the predictive power of tomography-guided approaches. Nanomaterial platforms can address these drawbacks, safely delivering therapeutics, concomitantly imaging their delivery pathways, and presenting sites for targeting agent attachment. Graphene quantum dots (GQDs) possess physical properties that are critical for biomedical applications, including small size (3-5 nm), high quantum yield, low cytotoxicity, and pH-dependent fluorescence emission. Thus, our work utilizes nitrogen-doped GQDs as a basis for targeted image-guided cancer therapy. GQDs serve as an emissive platform for covalent attachment of a targeting agent (hyaluronic acid (HA) targeted to the CD44 receptors on several cancer cell types) and oxidative stress-based cancer therapeutic (ferrocene (Fc)). The synthesized multifunctional formulation is characterized and its efficacy evaluated in vitro. Elemental mapping indicates that the purified from reactants synthetic product has an average iron content of 0.64 atomic percent, suggesting the successful attachment of the therapeutic, while FFT analysis of TEM images confirms the crystalline structure of the GQDs. Although GQDs alone yield no cytotoxicity as quantified via the MTT assay up to the maximum imaging concentrations of 1 mg/mL, the Fc-HA-GQD formulation exhibits a higher cytotoxic response in the cancer cells (HeLa) targeted by the HA as opposed to healthy ones (HEK-293) that do not overexpress CD44, suggesting cancer-selective targeted treatment. As Fc induces oxidative stress that is less mitigated in cancer cells, we expect it to also contribute to the observed cancer-selective treatment response. As a result, we propose Fc-HA-GQD formulation as a multifunctional targeted delivery, imaging, and cancer-specific treatment agent further to be studied in vivo.

(Presentation is private)

PHYS2021CERESA13479 PHYS

Breaking the wall of sensitivity with Surface Plasmon Coupled Emission

Type: Graduate
Author(s): LUCA CERESA Physics & Astronomy Jose Chavez Physics & Astronomy Emma Kitchner Physics & Astronomy
Advisor(s): Zygmunt Gryczynski Physics & Astronomy
Location: Zoom Room 1, 01:42 PM

Fluorescence has proved itself to be a useful tool in a wide variety of fields, ranging from environmental sensing to biomedical diagnostics. In this study, we propose to utilize a fluorescence-based technique called Surface Plasmon Coupled Emission (SPCE) to monitor molecular binding and to detect low concentrations of physiological markers (e.g. biomarkers present in the human body as a result of a disease). SPCE is characterized by directional emission that allows for a superior sensitivity and selectivity for detection. The development of an SPCE-based detection platform will allow for simple, fast and sensitive detection in a compact configuration that can be relatively easily implemented in the field or in primary care offices. Surface plasmon induced fluorescence at the interface of a thin metal layer (e.g. 50 nm of silver or gold) and a dielectric (e.g. glass) allows for highly enhanced excitation of fluorophores deposited on top of the metal film and very efficient detection due to the directional nature of this emission. As a result, we expect highly improved detection sensitivity compared to other fluorescence detection methods or other surface detection methods such as surface plasmon attenuated reflection (SPR).

View Presentation