Filter and Sort







COSC2019PARRIS54725 COSC

TCU and UNTHCS Longitudinal Integrated Clerkship Scheduler

Type: Undergraduate
Author(s): Alexander Parris Computer Science Zach Alaniz Computer Science Huy Bui Computer Science Justin Herold Computer Science Katie Ortstadt Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Session: 2; 3rd Floor; Table Number: 5

presentation location

The new TCU and UNTHSC School of Medicine is taking a progressive approach to curriculum for their students. The standard for medical clerkships, is for a medical student to focus on a practice, then move on to the next practice. This leaves a gap of time between learning and implementing a medical practice in the real world. The Longitudinal Integrated Clerkship (LIC) will engage students in a variety of medical practices in 2 week cycles, so students will constantly be maintaining their grasp on import skills and practices. It is our job to provide the scheduling application that will best match each student and doctor, at the best times.

View Presentation

COSC2019SOUTHWORTH35431 COSC

Sheepdog Defense Group

Type: Undergraduate
Author(s): Hayden Southworth Computer Science Tek Ghimire Computer Science John Hodnett Computer Science Phong Nguyen Computer Science Muoi Pham Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Session: 1; 3rd Floor; Table Number: 5

presentation location

Sheepdog Defense Group is a local Fort Worth self-defense company that is fully licensed by the State of Texas Private Securities Bureau to provide self-defense and weapons training to help other protect their communities. Their main goal is to provide training to church groups and private schools to help them from becoming targets for acts of violence. Sheepdog Defense Group also offers this self-defense and weapons training to the public so that they can protects them selves and their families. Sheepdog Defense Group is looking for a new website that will allow customers to sign-up for classes using an interactive calendar and access an online store to purchase Sheepdog merchandise. The site will allow the Sheepdog Guards to access all of the important information needed to protect their community as well as access their own information. The site will also allow the owner to manage a wide range of services regarding the business which he is currently doing all by hand.

(Presentation is private)

ENGR2019AGUEROADAME49081 ENGR

Engineering Capstone Project - Computer Vision

Type: Undergraduate
Author(s): Melina Aguero Adame Engineering Susana Murillo Engineering
Advisor(s): Stephen Weis Engineering
Location: Session: 1; Basement; Table Number: 6

presentation location

As part of one of the engineering capstone projects, a calibration testing system was improved with the aid of computer vision. Computer vision was integrated into this project as a solution to a rotating pedestal calibration test that was previously performed by the naked eye. The main goal of this system was to detect and track a red 635 nm wavelength laser spot with offsets as small as 0.025 inches on a 10 x 10 inch grid accurately and precisely. Designing this system involved three major criteria: camera selection, data processing hardware, and algorithm performance.
The first criteria studied in the design process was the camera. The system required a camera that was compact in size, covered the entirety of the grid at less than 11 inches, and captured high quality images. Furthermore, two main data processing hardwares were explored: Raspberry Pi and a standard test laptop. The processing hardware criteria considered were speed, portability, and maintenance. Finally, RGB and houghcircles were the two algorithms used to detect the red laser dot. Testing was conducted to compare the algorithms based on their ability to detect the laser spot, precision in tracking, and repeatability. These design considerations guided the down selects for the final components used in this system.

View Presentation

ENGR2019BIESEMEIER44452 ENGR

Design and Development of an Actuation and Extraction Force Tester: Programming

Type: Undergraduate
Author(s): Thomas Biesemeier Engineering Zach Hollis Engineering Ben Krause Engineering Talha Mushtaq Engineering
Advisor(s): Robert Bittle Engineering
Location: Session: 2; 3rd Floor; Table Number: 3

presentation location

The LabVIEW team for the Applied Avionics Inc. project focuses on fully integrating the programming of all electrical components with LabVIEW. The major requirements for this project include utilizing LabVIEW to display and capture data feedback, completely automate the testing process, and to read and send data directly to AAI’s database. By creating an actuation and extraction feedback machine that is fully LabVIEW controlled, a variety of switch body types were able to be accommodated and tested. The machine has been shown to decrease variability of results and improve the efficiency of AAI’s current process in all aspects required.

View Presentation

ENGR2019CLARKE58037 COSC

AWS for HealthCare

Type: Undergraduate
Author(s): Kenzie Clarke Computer Science Kien Nguyen Computer Science
Advisor(s): Cuiling Gong Engineering Liran Ma Computer Science
Location: Session: 1; 1st Floor; Table Number: 4

presentation location

Cloud based services such as IBM Cloud and Amazon Web Services provides a new platform for data collection, storage and processing through the internet that enables environment monitoring via wireless sensor networks. In this project, we would like to develop a cloud-based low power monitoring and notification platform using AWS. Most existing notification platforms are provided as an expensive, closed system that do not allow flexibility and is often difficult to troubleshoot. These systems require special hardware (such as unique walkie-talkies) and upgrades are pushed back due to costs.
Our system will utilize AWS Lambda functions, a cloud database, and IOT buttons so that medical staff can receive and store real time patient vitals and notifications with a data forwarding device such as a smart phone, tablet, or computer. AWS solutions are low-cost and flexible, allowing the care centers to customize the functionality to their specific needs. These buttons do not require wired power supply and have a long-lasting battery.

View Presentation

ENGR2019DECK64177 ENGR

HyPIR Electrolysis for Potassium Hydroxide Solutions at Different Laser Specifications

Type: Undergraduate
Author(s): Trystan Deck Engineering Aliesha Rau Engineering
Advisor(s): John Fanchi Engineering
Location: Session: 2; 2nd Floor; Table Number: 9

presentation location

We are presenting a method referred to as Hydrogen Production by HyPIR Electrolysis. The method increases the rate of hydrogen production from a 1 molar potassium hydroxide and water solution under 6 volts when an infrared laser is irradiated with an optimum wavelength of light through a cell and concentrated on exposed copper electrodes. The irradiating light facilitates the dissociation of water by stretching the hydrogen oxygen bonds and increasing the rate of hydrogen production. Production of hydrogen due to the class 4 laser is altered by the specifications of laser energy, pulses per second, and spot size.

View Presentation

ENGR2019DEVOOGHT49649 ENGR

FDM 3D Printing Mechanical Property Testing

Type: Undergraduate
Author(s): Luke Devooght Engineering Melina Aguero Engineering
Advisor(s): Becky Bittle Engineering
Location: Session: 2; Basement; Table Number: 6

presentation location

In this experiment, the mechanical properties of 3D printed specimens of different printing parameters were tested under tension. The printing parameters of these specimens were: surface resolution, infill density, and print orientation. Parts were printed in Onyx nylon with a Fused Deposition Modeling (FDM) printer called the Markforged Onyx Pro. Factorial sets of specimens using all various parameters are printed and tested to create a reference table for future engineering projects. Specimens are then printed as composite variations with continuous fibers in order to understand the benefits a composite may have.

View Presentation

ENGR2019NIKOLAI12345 ENGR

Stock Car Suspension Stiffness Ratio Analysis

Type: Undergraduate
Author(s): Danny Nikolai Engineering
Advisor(s): Mike Harville Engineering
Location: Session: 1; 2nd Floor; Table Number: 6

presentation location

A racecar’s suspension is one of the key contributors to its performance on a track. Each component – springs, shocks, links, etc. – can be dealt with as a variable within a mathematical model. There are hundreds of combinations of these variables, with each change affecting the stiffness ratio. Using the sway bar as the variable of interest, data acquisition, and computer modeling, a mathematical was developed for predicting the stiffness ratio as a function of sway bar diameter. This model can simplify the time-consuming iterative process that is “racecar setup” by allowing a race team to plug numbers into an equation to make predictions instead of conducting on-track test sessions to determine the results of each component change.
PDF: Attached to this email.

View Presentation

ENGR2019PRASAI24291 ENGR

Remote Controlled Robotic Arm Vehicle

Type: Undergraduate
Author(s): Chris Prasai Engineering Mike Tran Engineering
Advisor(s): Morgan Kiani Engineering
Location: Session: 1; 1st Floor; Table Number: 2

presentation location

In our project, image tracking was employed to provide a honing mechanism for a robotic "scorpion tail" attached to a small Remotely Controlled Vehicle. The car will be controlled wirelessly through a web interface, with mobile phones being the target user. Like the Mario Kart Versus Mode, where multiple cars drive and bump into each other, the vehicle will be controlled wirelessly while the "tail" is actively seeking targets and upon close proximity will "pop" the balloon. Each car will have 3-5 balloons to start, and the objective of the tournament will be to hunt down the remaining cars and “pop” their balloons, until all cars lose their balloons and the victor remains with at least one balloon intact. Python and Google Cloud were used to make a server with for the mobile website, and C++ was used to relay the commands sent wirelessly to the vehicle's two DC motors. Image tracking was implemented using the popular computer vision OpenCV library in python. The research will conclude with a tournament on Pi day (March 22, 2019).

View Presentation

ENGR2019PRASAI45528 ENGR

Object Detection and Retrieval Using Low-Cost Autonomous Robotic Vehicle

Type: Undergraduate
Author(s): Chris Prasai Engineering Michael Chau Engineering Armando Romero Engineering Mike Tran Engineering
Advisor(s): Morgan Kiani Engineering
Location: Session: 2; 1st Floor; Table Number: 2

presentation location

In our project, we aimed to design an autonomous rover similar to that of the popular Mars rovers such as Curiosity. Our rover employs a differential drive system with two continuous rotation servo motors that are controlled with the popular ROS robotic programming library in C++ and Python. A navigation algorithm employs the known position of the robot gathered from a magnetic encoder on the motors and the multiple optical range fidners placed around the vehicle to avoid obstacles on route to its destination. A camera is employed to detect target objects for simple pick-and-place tasks using its DC motorized gripper placed at the front of the vehicle. We have successfully built this vehicle and will demonstrate its capabilities at the 2019 IEEE R5 robotics competition in Lafayette, Louisiana as well as at the SRS presentation day.

View Presentation