CHEM2018HASSAN17248 CHEM
Type: Undergraduate
Author(s):
Asim Hassan
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
(Presentation is private)Abacavir or Ziagen, is an antiretroviral medicine that is used in conjunction with other
medicines to treat HIV. Although it is not a cure, it has been clinically proven to be
effective in diminishing the rate of HIV replication. The synthetic process of creating
Abacavir is both timely and costly, so therefore a new synthetic process has been
created to generate a chemical analog (specifically a triazine derivative) that is cheaper
to produce that can be if not potentially more chemically effective than Abacavir. Once
the analog is produced, a series of analytical tests will be done on a micro organismic
level to determine if the analog is both effective and safe enough to be used in human
clinical studies further down the road.
CHEM2018HAUGEN286 CHEM
Type: Undergraduate
Author(s):
Avery Haugen
Chemistry & Biochemistry
Advisor(s):
David Minter
Chemistry & Biochemistry
(Presentation is private)The pyrrolophenanthridone alkaloid pratosine is a natural product related to hippadine, which is known to be a powerful but reversible inhibitor of spermatogenesis in rats. Hippadine has also shown cardiovascular as well as anticancer activity. Given the structural similarities between the two molecules, it is expected that pratosine and hippadine will demonstrate similar biological effects. Our work toward a laboratory synthesis of pratosine will facilitate large-scale production thus affording sufficient quantities of the material for a complete pharmacological study of its properties. Although we have a synthetic plan for preparing pratosine, several reactions have failed due to solubility problems. This research focuses on solving these problems by using an alternate starting material. The commercially available compound vanillin, which is extracted from vanilla beans, is a simple and inexpensive aldehyde with an appropriate structure for attaching other groups that should improve the solubility properties of several of the synthetic intermediates. Our goal is to find a specific substituent that will provide the required characteristics but which can also be removed later to generate the final product.
CHEM2018LE33668 CHEM
Type: Undergraduate
Author(s):
Linh Le
Chemistry & Biochemistry
Advisor(s):
Jeffery L. Coffer
Chemistry & Biochemistry
(Presentation is private)Urea is a low-cost, water-soluble fertilizer that is used as the major source of nitrogen in agricultural production. However, the problem with leaching, in which urea in soil is rapidly washed away through rain and irrigation, results in inefficiency in nutrient absorption, low crop yield, poor harvest, and economic failure for farmers (Broadbent 1958), as well as the environmental pollution of groundwater by the release of excessive amounts of nitrate, which adversely affects this non-rechargeable water source. Therefore, recent research attempts to design a suitable system to prolong the release of urea from water in soil to improve soil fertility, agricultural economy, and ground water protection. A prospective approach is to integrate urea into a stable matrix that releases the desired material with an optimal time window.
Porous Silicon (pSi) has been studied as the material of diverse interest, due to its surface chemistry and porous morphology that has promoted many nanotechnology advances, in conjunction with its biocompatibility and biodegradability (Canham 2014). Since pSi degrades slowly in aqueous media and does not react with the soil component, it is selected to be a possible matrix for sustaining urea release. pSi is believed to interact with urea via hydrogen bonds (via surface silanol species), and thus its porous structure is the key to trap urea particles for relatively long periods in water, while exposing the fertilizer to plants. This bioactive pSi material is produced from the eco-friendly Tabasheer-derived silica, during which pSi porosity is maintained (Kalluri et al. 2016). Loading of urea into pSi is carried out using ethanol as a solvent, with theoretical loadings ranging from 27-33% of the composite mass. Release kinetics of urea from water is currently being investigated using highly sensitive colorimetric assay that applies Jung’s method (Jung et al. 1975).
The urea-loaded pSi prepared in these experiments were characterized using several different techniques. X-ray diffraction (XRD) evaluates the crystallinity of pSi after fabrication, with the presence of three peaks consistent with a cubic unit cell structure [Si (111), (220), and (311)]. Thermal gravimetric analysis (TGA) gives the mass loss percentage between melting (132oC) and boiling (203oC) points of urea, which represents the practical loading of urea in a given sample. The results deviate 1-2% from the theoretical loading percentage. TGA also shows the stability of the composite over two months at room temperature, with the recent loading measurement analyses consistent with the previous ones. Differential scanning calorimetry (DSC) analysis confirms that the urea is incorporated in the pSi matrix. Loading and characterization studies were conducted in triplicate to ensure reproducibility of results.
CHEM2018NIEBUHR15382 CHEM
Type: Undergraduate
Author(s):
Brian Niebuhr
Chemistry & Biochemistry
Marianne Burnett
Chemistry & Biochemistry
Advisor(s):
Kayla Green
Chemistry & Biochemistry
(Presentation is private)A library of novel tetra-aza macrocyclic molecules, specifically 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene derivatives, capable of chelating metal ions in vivo have been synthesized. Applications of these complexes are currently being pursued as a 1) therapeutic focusing on radical scavenging and metal chelation and 2) diagnostic tool such as magnetic resonance imaging (MRI) contrast agents when complexed with specific metal ions. However, a full study of the electronic effects imparted by substitution to the pyridyl moiety (position 13) and the subsequent impact on the metal center have not been explored. The objective of the present study is to characterize metal complexes of four tetra-aza macrocyclic metal chelating molecules. The pyridyl functional groups studied include: A) unmodified pyridyl, B) p-hydroxyl, C) p-nitrile, and D) m-hydroxyl modified pyridyls on a pyclen base structure (position 13). Notable progress has been made in developing an optimal procedure for obtaining copper (II) complexes and will be presented. Analysis of the resulting copper (II) complex of the p-nitrile tetra-aza macrocycle indicate a six-coordinate metal center based on X-ray diffraction. UV-Visible spectroscopy and electrochemistry help to confirm donor strength among the ligand series as well as a comparison to other tetra-aza macrocycles. Ultimately, this project is focused on understanding the electronic contribution of these functional groups on the pyridine ring and the influence of the ligand and complexed systems as therapeutic and diagnostic agents.
CHEM2018PARKER27356 CHEM
Type: Undergraduate
Author(s):
Jack Parker
Chemistry & Biochemistry
Marianne Burnett
Chemistry & Biochemistry
Hannah Johnston
Chemistry & Biochemistry
Advisor(s):
Kayla Green
Chemistry & Biochemistry
(Presentation is private)Molecules previously developed by the Green Research Group (L2 and L3) have been shown to reduce reactive oxygen species (ROS) through multiple pathways of activity. Although unclear if ROS is the only source, Alzheimer’s disease and other neurodegenerative disorders are known to be initiated from the formation of these ROS. For these molecules to appropriately execute their antioxidant and radical scavenging ability, they must enter into the brain where the damaging ROS are located. The blood brain barrier (BBB) is a natural obstacle that prevents toxins and infections from reaching the brain. The L2 and L3 ligands must penetrate this barrier to be in the desired site of action to reduce the number of ROS. Addition of a glucose moiety to other therapeutic molecules has been shown to increase permeability across the BBB. The target of this project is to enhance these synthetic pathways of glycosylation and increase product yield. Initially, direct addition of the glucose moiety to the L2 and L3 molecules was achieved. However, challenges with purification techniques suggested a different route to purification or design should be considered and one new route is presented here. With L2 and L3 being inherently hydrophilic, addition of an aliphatic chain to the hydroxyl group of L2 or L3 should increase the hydrophobicity of the molecule allowing for different purification techniques, which can ultimately be glycosylated to give purified desired compounds.
CHEM2018RODRIGUEZ3379 CHEM
Type: Undergraduate
Author(s):
Adriana Rodriguez
Chemistry & Biochemistry
Advisor(s):
Jeff Coffer
Chemistry & Biochemistry
View PresentationA recent and promising development in solar energy involves a class of materials known as organometal halide perovskites, capable of efficiencies (>20%) comparable to the current industry standard of silicon. These materials also demonstrate strong light emission, a key property associated with energy-efficient sources of lighting, suggesting potential applications in light-emitting devices such as light-emitting diodes (LED). The goal of this project was to investigate the fundamental photoluminescence (PL) properties of perovskites housed in a nanoporous material known as semiconducting porous silicon (pSi).
pSi provides a nanoscale template to control the growth of the light-emitting perovskite structure and is an electrically-responsive host matrix, ideally regulating the flow of charge to/from the perovskite. Samples were prepared within the pores of surface oxidized pSi and hydride-terminated pSi, each with a mesoporous width in the 5 – 50 nm range. The perovskite-loaded pSi was fabricated through solution-loading of perovskite precursors into warmed pSi (60ºC), removal of excess reactant solution, and drying. While perovskites can feature a wide range of halide compositions (including mixed halides), this research thus far has focused on methylammonium lead iodide (MAPbI3) perovskite.
These perovskite nanostructures formed within pSi were characterized using a variety of techniques. Following synthesis, the stability of each prepared sample was monitored for 3 weeks through tracking its relative photoluminescence intensity at its maximum value. Perovskite morphology was evaluated by SEM (scanning electron microscope) and TEM (transmission electron microscope) imaging, crystalline structure was evaluated by XRD (x-ray powder diffraction), and elemental analysis was evaluated by EDX (energy-dispersive x-ray spectroscopy).
In this study, SEM imaging showed consistent perovskite particle size and ununiformed perovskite infiltration. It is found that the emission intensity for MAPbI3 formed within hydride-terminated pSi (at ~730nm) and oxidized pSi (at ~740nm) were relatively stable over a 3 week period, but the emission intensity for perovskite microrods formed in the absence of any pSi template actually decreased over time. More detailed measurements of the long term stability of these new nanoscale materials are currently under evaluation.
CHEM2018TRETTE12261 CHEM
Type: Undergraduate
Author(s):
Sayre Trette
Chemistry & Biochemistry
Nelli Bodiford
Chemistry & Biochemistry
Nathan Shurtleff
Chemistry & Biochemistry
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
(Presentation is private)Significant increases in average life expectancy in the last century have brought a growth in human illnesses related to aging: chronic wounds, bone diseases, eye diseases and cancer. In this work, we demonstrate fabrication of biodegradable polymer scaffolds that can be used for drug delivery and tissue engineering to treat the above-mentioned ailments. Tissue engineering can be defined as the use of a combination of engineering and materials methods and appropriate biochemical factors to improve or replace biological tissues.
This project includes fabrication of solid and porous fibers from the biocompatible PCL polymer. This polymer is currently used for surgical sutures, nerve guides and three-dimensional scaffolds for use in tissue engineering. The drug release rate is faster when it is loaded into porous PCL fibers compared to solid PCL fibers, creating an advantage for porous fiber fabrication. Use of a technique known as electrospinning of a solution of PCL and chloroform results in solid fibers that are 4 (± 2.0) micrometers (μm) in diameter. The porous fiber scaffolds are fabricated using a 50% weight of PCL compared to volume of solvent (w/v) solution prepared in a mixture of solvents 9:1 dichloromethane (DCM):dimethyl sulfoxide (DMSO) and 60% w/v PCL in 8:2 DCM:DMSO. The porous fibers are collected at 0-5 oC with a pore size of 50.0 (± 10.0) nanmoeters (nm) and fiber diameter of 3.0 (± 1.0) μm. The porosity for 50% w/v PCL and 60% w/v PCL fibers ranges from 40-50%.
Fiber surface morphology is characterized using field emission scanning electron microscopy (FESEM). In addition, the melting temperature and percent crystallinity are determined via differential scanning calorimetry (DSC). The melting temperature was collected of PCL bulk, 30%w/w PCL solid fibers, 50% w/v PCL and 60% w/v PCL. The crystallinity of PCL in solid fiber and porous fiber forms ranges from 52-55%, compared to the 60% crystallinity of PCL bulk. Solid PCL fibers showed to be more crystalline compared to porous PCL fibers, which in turn can effect the degradation time.
In order for these composites to be identified as a major technological advancement, the aging and degradation of the polymer scaffold must also be understood. The degradation of a given polymer matrix impacts the potential drug delivery behavior when testing in vitro. Degradation studies of the above mentioned materials are currently ongoing.
CHEM2018VILLEGAS47591 CHEM
Type: Undergraduate
Author(s):
Hector Villegas
Chemistry & Biochemistry
Advisor(s):
Benjamin Janesko
Chemistry & Biochemistry
(Presentation is private)While cis/Z-substituted alkenes are usually less stable than their trans/E-substituted counterparts, the cis-2-butenyl anion shows a higher preference over the trans-isomer. Calculations suggest that the discrepancy is due to two cooperating effects: electrostatic interactions between the anionic center (C1) to the methyl group (C4) and coupling between the C=C pi* antibonding orbital and both the CH2 pz and CH3 C-H sigma bonds. Supporting the charge transfer is the fact that substitution on C1 with EDG stabilizes the cis more while substitution on C4 with EWG stabilizes the cis more. For the coupling interaction the C=C bond was stretched which increased the cis stabilization by lowering the pi* orbital energy and increasing the coupling between the lone pair on C1 and pi*.
COSC2018COX17551 COSC
Type: Undergraduate
Author(s):
Connor Cox
Computer Science
Kaitlin Hendrick
Computer Science
Kiet Nguyen
Computer Science
Jim Pfluger
Computer Science
Advisor(s):
Lisa Ball
Computer Science
View PresentationGeology is better known for work done in the field than software applications, but by combining software with science, researchers can acquire results more efficiently and make better determinations about data. Stream input data, which consists of variables like stream size, depth, and sediment density, can be used to predict the location of oil deposits. Without a software application to automate the process, this is difficult to calculate manually.
This application will provide a useful resource and tool by which researchers can input geological data and have results returned based on that input. Specifically, users will enter data about streams and select one of two primary methods of calculation which will return results that refine sediment discharge estimates and give the user the yearly averaged bankfull flow duration. To achieve this we have implemented a database to store all of the necessary information concerning the stream data, such as location, climate ID, and Koeppen classification, established software to function as middleware between the database and the user interface, and built a web application that can be readily accessed online. With no knowledge of the middleware or database, the expected user can simply go on the website, select the desired method of calculation, and have the data returned to them in an easily understandable format.
COSC2018GONZALEZ13220 COSC
Type: Undergraduate
Author(s):
Rebecca Gonzalez
Computer Science
Daniel Fletcher
Computer Science
Ford McDonald
Computer Science
Luke Reddick
Computer Science
Advisor(s):
Lisa Ball
Computer Science
View PresentationNaturally Curly Cook is a baking business that does catering, standing coffee shop orders, and Farmer’s Markets. Currently, Naturally Curly Cook is having difficulty with its current pen and paper ordering system and inefficient invoicing. The purpose of the Naturally Curly Cook Team is to create an iOS application that streamlines ordering and invoicing. The application will display a daily baking list and what the bakers must bake with a check box system to ensure everything has been baked. It will also display weekly orders. Orders can be added, edited, and deleted while still maintaining the orders that do not change week to week. Excel will act as the database for all customers, orders and quantities to be stored. In addition to the ordering process, an invoicing process will allow invoices to be automatically generated from the week’s orders. The new invoicing process will be generated from Excel and will allow for different pricing options and it will update with week to week changes. The intent of this project is to create a more automatic and efficient business while cutting costs and most importantly retaining data integrity.