ENGR2021VANDERBROOK7258 ENGR
Type: Undergraduate
Author(s):
Richard Vanderbrook
Engineering
Biology
Advisor(s):
Robert Bittle
Engineering
Location: Zoom Room 6, 03:03 PM
View PresentationThe drying of limestone is usually done industrially in a rotary drum dryer. The purpose of this project is to generate a model that will predict limestone particle motion as it passes through the dryer. By creating an accurate model of the particle movement during the drying cycle, the operator will be able increase the dryer’s efficiency. Using basic physics and through experimental testing, our team was able to produce a model that will provide detail of particle motion inside the dryer.
ENSC2021LAM64108 GEOL
Type: Undergraduate
Author(s):
Amy Lam
Environmental Sciences
Graham Rice
Environmental Sciences
Advisor(s):
Esayas Gebremicharl
Geological Sciences
Location: Zoom Room 5, 03:11 PM
(Presentation is private)The Mississippi River Delta is the 7th largest river delta on Earth that consists of the Mississippi River and the Gulf of Mexico. Additionally, it contains 40% of the wetlands in the contiguous United States and over two million hectares (4,942,108 acres), an area equivalent to the size of two football fields, of agricultural lands. Due to fertilizer runoff from agricultural lands, the river delta has been experienced excess levels of nitrogen and phosphorus. The excess levels of these nutrients have contributed to water pollution in the delta and the hypoxia zone in the Gulf of Mexico. This research will focus on mapping the levels of nitrogen and phosphorous across the river delta to determine where the highest levels are
ENSC2021LAWTON35350 ENSC
Type: Undergraduate
Author(s):
Katie Lawton
Environmental Sciences
Victoria Bennett
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Mark Demarest
Biology
Becky Johnson
Environmental Sciences
Location: Zoom Room 3, 12:30 PM
View PresentationTo understand wildlife ecology, one common strategy is a technique known as telemetry. This technique involves attaching radio-transmitters to animals. For volant species, such as bats, transmitters are attached to their backs with an adhesive. However, one issue is that it is easy for the bats to remove the transmitter. The loss of transmitters early in surveys is not only costly, but limits the amount of data that can be collected. Thus, there is a real need to extend the length of time a transmitter remains on a bat. To address this, we conducted a two-part behavioral observation study in the bat flight facility at TCU. In part 1 from April to September 2019, we tested 1) two currently available transmitter brands and 2) three different prototype designs to determine if the overall shape and size of the transmitter impacted the length of time they remained attached. We found that regardless of transmitter brand or design, the antennas incurred a significant amount of damage, suggesting the bats used the antennas to grab and pull them off. Thus, for part 2 from August to September 2020, we conducted a series of trials to establish the effectiveness of three coatings at preventing bats from damaging the antennas. We found that transmitters did not remain attached significantly longer with cayenne pepper, nail-biting deterrent, or Tabasco sauce on the antenna, suggesting that either 1) bats were not deterred by the three coatings we selected, or 2) bats may not be chewing the antennas or putting them in their mouths to provide leverage to remove them. Overall, our study revealed that bats can and will remove transmitters by grooming them off using the antennas and recommend that future research focuses on integrating the antenna into the body of the transmitter as a preventative measure.
GEOL2021ALEXANDER58660 GEOL
Type: Undergraduate
Author(s):
Meagan Alexander
Environmental Sciences
Benite Ishimwe
Environmental Sciences
Olivia Jones
Environmental Sciences
Manyiel Mel
Geological Sciences
Montreal Taylor
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Zoom Room 6, 01:10 PM
(Presentation is private)Agricultural soils require the presence of three basic plant nutrients: Nitrogen, phosphorus, and Potassium (NPK). Each nutrient has its role in plant growth and their deficiencies have adverse effects. Therefore, detailed analysis was required to analyze whether soils from a lake were sufficient in terms of these nutrients and could be suggested for use as an agricultural soil amendment on a particular plot of land. Experimental study by way of specific chemical analysis methods (LOI, spectroscopy, etc.) looked at water content, pH, EC, SOC (Soil Organic Carbon), phosphorus and nitrogen content in the lake sediments; these values were used to determine what contents/nutrients in the lake sediments would need to be optimized for crops of interest. Results from the concluding experimental procedures would allow the property owner to effectively make use of their resources.
GEOL2021DUNCAN3921 GEOL
Type: Undergraduate
Author(s):
Connor Duncan
Geological Sciences
Annie Deck
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Environmental Sciences
Location: Zoom Room 2, 01:42 PM
View PresentationThe Atlantic Forest, which extends over 17 Brazilian States, is one of the richest biomes in the world. Historically it has been a hot spot for biodiversity including endangered and endemic species. Despite this, only 15% of the forest’s original range remains. This loss is disproportionally distributed as 4 of the 17 states accounts for 90% of the loss. The source of this deforestation can be attributed primarily to logging developments and eucalyptus plantations. Through using public geodatabases, satellite imagery, and ArcGIS Pro we will show this forest loss and fragmentation in a visually accessible way.