Filter and Sort







CHEM2017HERMANSON12391 CHEM

Bioisosteric analogs of S-adenosylmethionine as potential antibacterial SAM riboswitch inhibitors

Type: Undergraduate
Author(s): Kristina Hermanson Chemistry & Biochemistry
Advisor(s): Youngha Ryu Chemistry & Biochemistry

This project was aimed to prepare stable isosteric analogs of S-adenosylmethione (SAM) whose sulfur atom is replaced by a nitrogen atom and to evaluate these analogs for the SAM riboswitch-binding activities and antibacterial activities. In bacteria, SAM binds to the SAM riboswitch, which regulates the biosynthesis of methionine and cysteine, two amino acids essential for survival. Therefore, synthetic molecules that bind to SAM riboswitches have the potential to kill bacterial cells.
Three different classes of SAM riboswitches exist in bacteria (SAM I, II, and III). Each class of SAM riboswitch gene under control of T7 promoter was prepared by the overlapping extension polymerase chain reaction of synthetic oligonucleotides. Each SAM riboswitch gene was successfully cloned into the pUC19 plasmid and verified by DNA sequencing. A high concentration of each SAM riboswitch DNA was prepared by PCR and further converted to the corresponding SAM riboswitch RNA molecules by in vitro transcription using T7 RNA polymerase. All three classes of SAM riboswitches will be tested for binding to the synthesized SAM analogs.

View Presentation

CHEM2017WRIGHT4086 CHEM

Mutated leucyl- tRNA synthetase for the incorporation of unnatural amino acids

Type: Undergraduate
Author(s): Courtney Wright Chemistry & Biochemistry
Advisor(s): Youngha Ryu Chemistry & Biochemistry

Traditionally the genetic code has utilized the canonical twenty amino acids in order to construct proteins and facilitate life. The process of translation involves an RNA template and codons that will be read and matched to corresponding tRNA molecules carrying charged amino acids. An aminoacyl tRNA synthetase specific to each amino acid is responsible for loading and charging the amino acid to the tRNA. In recent years, a few orthogonal pairs of the tRNA and aminoacyl tRNA synthetase have been utilized to expand the genetic code past the traditional 20 amino acids. Expanding the genetic code allows for new insight into protein function, structure, and interactions within the cell. The introduction of new amino acids could lead to proteins with new chemical or biological activity and even advantageously alter function leading to evolutionary events. In our research we attempt to incorporate unnatural amino acids using a leucyl-tRNA synthetase from Methanobacterium thermoautotrophicum and a tRNA which will suppress the amber stop codon (TAG). A mutant LeuRS lacking an editing domain (MLRS CP1) was generated. The best mutant was isolated and sequenced. The leucine binding site, determined from sequence homology, was randomized at five amino acids to create a library of mutants. The best mutant is selected through a positive selection process where only MLRS CP1 that add an amino acid to the tRNA will survive in the presence of chloramphenicol. Finally, in a negative selection step, those mutants which add natural amino acids to the tRNA will die in the presence of 5-fluorouracil. The library can then be used for further experiments to determine how effectively unnatural amino acids are incorporated.

View Presentation

COSC2017CAO34862 COSC

A Portable and Affordable iBeacon based Pet Tracking System

Type: Undergraduate
Author(s): Harrison Cao Computer Science
Advisor(s): Liran Ma Computer Science

In U.S., about 63% of households include pets. However, certain pets (such as dogs) have the instinct to run away from the house. Yet, it is impossible for the pet owners to watch their pets all the time. Therefore, a portable and inexpensive handheld tracking system can be a useful tool for helping the owners to watch their pets.
This project intend to employ iBeacon, which is a technology released by Apple Inc., to build a tracking system. The iBeacon technique can achieve distance measurements based on the Received Signal Strength (RSS). The RSS value will change as the distance between Beacon and the signal receiving device change. Moreover, the iBeacon tag device for pets (called iBeacon tags) is small (in the size of a quarter) enough to put on the collar of a pet. The application will store the information of beacons (including UUID, which is used to distinguish different beacons) that provide by users, and continually detect the signal from the beacons. When the signal is not strong enough, which means the Beacon is out of the controllable range, then the application will alert the user.

View Presentation

COSC2017HOANG6807 COSC

DistinctSound: Develop and Implement Frequency Shifting for an iOS based Intelligent Sound Processing System

Type: Undergraduate
Author(s): Minh Hoang Computer Science
Advisor(s): Liran Ma Computer Science

Hearing aids aim to process and modify sounds into the most desirable forms for hearing impaired people to receive. However, due to multiple reasons including inconvenience and limited quality, only 20 percent of the people in the US who could benefit from a hearing aid wear one. This figure is likely to be much lower in other less developed countries.

Recently, smartphones with powerful computation capability and great mobility have emerged as a possible alternative for this problem. We have developed a preliminary iOS application with certain sound processing functionalities. It is able to collect all the sounds in the vicinity and amplify custom frequencies depending on the prescriptions of a specific user. In addition, the application can also produce different output on either the left or the right headphone piece. We have taken initial steps to make the system operate wirelessly with a Bluetooth earpiece; however, due to time and resources constraints, the application has not yet able to divide two distinct output like what it does on the normal iPhone earpiece. Also, a method for shifting sounds to lower frequency has not yet been implemented. We also have not yet tested the program to its fullest potential due to the sole access to only built-in iPhone’s microphone. A special microphone with many features such as noises canceling, separate streaming, and high sampling rate will enables us fully customize and prepare the application for future technologies. Our future system is expected to address these challenges.

View Presentation

ENGR2017CULVER43732 ENGR

Self-Erecting Inverted Pendulum

Type: Undergraduate
Author(s): Steve Culver Engineering
Advisor(s): Walt Williamson Engineering

In this experiment, we examine the non-linear dynamics of a mechanical system consisting of an inverted pendulum with one free-turning rotational degree-of-freedom attached to a computer-controlled cart with one linear degree-of-freedom. Using a Quanser Linear Servo Base Unit with Inverted Pendulum and paired software package, we used first principles to develop the non-linear control system needed to move the pendulum from stable equilibrium to unstable equilibrium and maintain unstable equilibrium. This combines the self-erecting inverted pendulum experiment and the classic pendulum experiment. Through the paired software package, we were able to derive the dynamic equations to develop the transfer function and proportional-velocity feedback system that describe the linear motion of the cart, successfully creating the non-linear control system for both phases of the experiment.

View Presentation