ENGR2017TEAGUE7756 ENGR
Type: Undergraduate
Author(s):
Connor Teague
Engineering
Advisor(s):
Sue Gong
Engineering
View PresentationKlein Tools is a major hand tools manufacturer in US focused on electrical and utility applications for professionals. One of Klein Tools products is called a fish rod that is used by professional electricians to pull wiring through walls, conduit, and plenums to route wire from one place to another. The current fish rod assembly process at Klein Tools involves manual dispensing of glue into the metal connectors before affixing them to fiberglass rods. The objective of this Klein Tools-sponsored project is to improve the throughput of assembly system and increase the accuracy and the consistency of the amount of glue dispensed to reduce product failures and adhesive waste.
The overall system in development consists of an automated metal connector orientation system, conveyor belt assembly, a glue dispensing system and a control system. Through the application of vibratory hopper feeders, pneumatic rotary tables and grippers, sensing cameras, break line sensors, and a conveyor belt, the system will orient the metal connectors glue side up, and present the connectors with adhesive to the operator for final assembly of the fish rods.
ENGR2017THACH58782 ENGR
Type: Undergraduate
Author(s):
Bao Thach
Engineering
Irene Kwihangana
Engineering
Advisor(s):
Morgan Kiani
Engineering
View PresentationIn this research project, the aim was to create a small, self-operated robot car to transport items. In addition, the robot-car can generate a distance when traveling through unknown places, and self-locate them in the next travels. The student authors hope that this robot car can be used to physically communicate and send medical supplies between severe patients and doctors in hospitals.
GEOL2017WALKER20025 GEOL
Type: Undergraduate
Author(s):
Jessica Walker
Geological Sciences
Advisor(s):
Richard Denne
Geological Sciences
View PresentationThis study involved the examination of core samples from the Lower Cretaceous aged Kiamichi Formation of the East Texas Basin in order to interpret its organic and elemental geochemistry using various techniques. The Kiamichi Formation may have the potential to be a source rock for hydrocarbons, and may be a plausible target for oil and gas companies to produce using unconventional techniques. Since this formation has yet to be thoroughly analyzed, this project has lead to further understanding of its potential by using techniques such as handheld x-ray fluorescence tool to estimate for the abundance of rare earth elements and trace metals, as well as a CHNS analyzer to determine the amount of organic carbon of the formation. Upon completion of the sample analysis, this geochemical information about the Kiamichi Formation provides beneficial information for further research on the overall Kiamichi Seaway.
INTR2017BARONI49831 INTR
Type: Undergraduate
Author(s):
Nick Baroni
Interdisciplinary
Micah Eimerbrink
Psychology
Kelsey Paulhus
Biology
Julia Peterman
Psychology
Morgan Thompson
Biology
Jordon White
Psychology
Advisor(s):
Gary Boehm
Psychology
View PresentationInfluence of Isolation Stress on Aβ Production and Cognitive Function in 5xFAD mice Baroni, N. J.,1 Peterman, J. L.1, White, J. D.1, Eimerbrink, M. J.1, Paulhus, K. C.2, Thompson, M. A.2, Chumley, M. J.2 & Boehm G. W.1,
1Department of Psychology, Texas Christian University
2Department of Biology, Texas Christian University
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects nearly 44 million people worldwide, and is increasing exponentially in prevalence. Thus, research into its causes and prevention is crucial. Transgenic mouse models of Alzheimer's disease are often used to better study AD pathology. These mice have genetic mutations that result in heightened production of amyloid beta (Aβ), a pathological hallmark of AD. It has been well established that stress can influence AD pathology. This study investigates how isolation stress influences the production of amyloid beta in 5xFAD transgenic mice. In addition, we investigated whether isolation stress impacts cognition in the contextual fear conditioning (CFC) paradigm. The mice were group-housed or isolated for both 2 and 3 months, followed by cognitive testing and tissue collection. Specifically, we utilized histochemistry to examine Aβ plaque counts and an ELISA to examine soluble Aβ production. We found that isolated 5xFAD+ mice had significantly more amyloid beta plaques than group-housed animals. 5xFAD+ mice isolated for 3 months also displayed a cognitive deficit in contextual fear conditioning. All together, our results support the research that isolation stress influences Aβ production and cognitive function, and extends that to the 5xFAD transgenic mice.
INTR2017CALCAGNO9574 INTR
Type: Undergraduate
Author(s):
Alexa Calcagno
Psychology
Philip Crain
Psychology
Micah Eimerbrink
Psychology
Amy Hardy
Biology
Kelsey Paulhus
Biology
Julia Peterman
Psychology
Morgan Thompson
Biology
Jordon White
Psychology
Advisor(s):
Gary Boehm
Psychology
Michael Chumley
Biology
View PresentationAlzheimer’s Disease (AD) is a neurodegenerative disease currently affecting about 5.5 million Americans, and the number of people affected may rise as high as 16 million by 2050. Characteristic AD pathology of deteriorating cognitive function is correlated with neurofibrillary tangles of tau protein and Amyloid-beta (Aβ) plaques. Aβ is a peptide resulting from cleavage of the Amyloid Precursor Protein (APP) primarily present within neuronal cell membranes. The Aβ peptide can be cleaved at different lengths, but Aβ1-42 is the most neurotoxic. Aβ1-42 primarily aggregates in the hippocampus, where it further stimulates the release of cytokine proteins initiating an inflammatory response. Previous studies in our lab have shown that short-term inflammation induced by injection of lipopolysaccharide (LPS) leads to an inflammatory response that stimulates production of Aβ1-42 peptides. The goal of this project was to determine whether this effect could be exacerbated through a second injection series of LPS after a fourteen-day recovery interval, thus modeling multiple, independent, bacterial infections, like that seen in humans. The animals were given 7 days of 250 mg/kg LPS or saline injections, a two-week break, and another 7 days of LPS or saline. Contrary to what was predicted, Aβ levels were not potentiated. This effect was found to be related to decreased inflammatory response upon secondary administration of LPS, as IL-1β mRNA was significantly lower in the group that got two rounds of LPS. Current studies of our lab are evaluating whether these results are related to the presence of antibodies to LPS or a specific tolerance mechanism.