Filter and Sort







BIOL2018ALENIUS27660 BIOL

Can Specialists Generalize? Diets of Texas Horned Lizards (Phrynosoma cornutum) in Small Texas Towns

Type: Graduate
Author(s): Rachel Alenius Biology
Advisor(s): Dean Williams Biology Tamie Morgan Geological Sciences

The Texas horned lizard (Phrynosoma cornutum) is considered a threatened species in Texas and Oklahoma, due to substantial range declines over the past several decades. Horned lizards are believed to be highly vulnerable to habitat alterations, due to extreme specialization on ants, particularly harvester ants (Pogonomyrmex spp.). I analyzed diets of Texas horned lizards from two small towns by identifying exoskeletons of prey items found in fecal pellets. I assessed dietary specialization by comparing diet to prey availability, based on pitfall traps and abundance of harvester ant colonies. My results found strong spatio-temporal variation with respect to prey abundance and consumption. Harvester termites (Tenuirostritermes cinereus) and big-headed ants (Pheidole spp.) accounted for over 70% of all prey consumed. Average consumption of big-headed ants was comparable to their abundance in pitfall traps, but consumption of harvester termites was much higher than their pitfall trap abundance. Consumption of harvester ants is strongly correlated with the number of harvester ant colonies within study sites and horned lizard home ranges. Dietary diversity and richness were positively related to the area of dense vegetation in sites and lizard home ranges. These results suggest horned lizards in these towns adjust diet in relation to prey availability, which is considered a characteristic of generalist predators. The superior nutritional value of harvester termites relative to similarly sized ants could explain the apparent lack of size-based prey preference in these horned lizard populations.

View Presentation

BIOL2018BRUNS38844 BIOL

Reproductive effects of early life stage thyroid disruption in the fathead minnow

Type: Graduate
Author(s): Peter Bruns Biology Bethany Pierce Biology Mallory Seemann Biology
Advisor(s): Marlo Jeffries Biology

Exposure to contaminants during development has the potential to cause adverse biological alterations that can persist through depuration periods and into adulthood. This study examined the effects of chemically induced, early-life-stage thyroid disruption on endpoints associated with thyroidal and reproductive function in the fathead minnow (Pimephales promelas). Fish were exposed to propylthiouracil (PTU) from 1 to 43 days post hatch (dph) to induce hypothyroidism. At the end of exposure, length and weight were measured and samples were taken for gene expression analysis. The remaining fish were transferred to un-dosed water and raised to maturity and, at 164 dph, a 21-day breeding assay was performed. At the end of exposure, fish exposed to PTU had significantly reduced length and weight indicating successful thyroid disruption. There were also significant differences in expression of several genes involved in the thyroidal and reproductive signaling systems. After maturation, there were no significant differences in any morphological variables. During the 21-day breeding assay, fish from the PTU exposure group had significantly reduced overall fecundity relative to controls. Based on data collected so far, it appears that this reduction in fecundity is due to either ovarian dysfunction or alterations in reproductive behavior. The results show that early-life-stage hypothyroidism can affect reproductive function later in life even after thyroid related endpoints have returned to control levels.

(Presentation is private)

BIOL2018CALLAGHAN48892 BIOL

Identifying Cellular Proteins that Interact with Hepatitis C Virus Protein NS3/4A

Type: Undergraduate
Author(s): Kaitlyn Callaghan Biology
Advisor(s): Giridhar Akkaraju Biology

Hepatitis C Virus is estimated to infect 3% of the world’s population and is transmitted by contaminated blood. HCV can be asymptomatic or lead to cirrhosis of the liver, liver cancer or hepatocellular carcinoma. Understanding the virus life cycle and the viral proteins generated by HCV will help generate new mechanisms of inhibition of the virus. HCV produces 10 viral proteins when it infects hepatocytes that increase the reproduction ability of the virus. The anti-viral response of the body uses transcription factors such as ATF-2, NFKB, and IRF-3 that translocated into the nucleus and bind to the interferon gene that produces interferon to alert the body of a viral infection. HCV viral protein NS3/4A acts as protease to cleave the polycistronic strand of viral proteins made by HCV and is known to inhibit IRF-3 movement into the nucleus to inhibit the production of interferon. HCV viral protein NS5A is known to inhibit the movement of transcription factor NFKB into the nucleus, thus inhibiting the anti-viral response. We are interested to see if NS3/4A inhibits the anti-viral response by blocking the movement of both transcription factors IRF-3 and NFKB into the nucleus.

View Presentation

BIOL2018FREDIANI25359 BIOL

Effects of social isolation on LPS-induced hippocampal amyloid-beta expression and cognitive dysfunction in C57BL6/J male and female mice

Type: Undergraduate
Author(s): Gabrielle Frediani Biology Rachel Donaldson Biology Micah Eimerbrink Psychology Christopher Hagen Biology Julia Peterman Psychology Jordon White Psychology
Advisor(s): Michael Chumley Biology Gary Boehm Psychology Meredith Curtis Biology

Psychological stress afflicts a considerable portion of the world’s population, and is linked, as both a risk factor and potential contributor, to dementia-related brain dysfunction in diseases such as Alzheimer’s disease (AD). The brain dysfunction in AD is marked by an increase in Amyloid-beta, the protein responsible for plaque deposition in the brain. The present study aimed to explore alterations in the production of amyloid-beta in response to stress and inflammation. Specifically, we were interested in social isolation stress- and inflammation-induced differences in cognition and amyloid-beta production in male and female mice. Mice were subjected to acute social isolation (6 days) and chronic isolation (28 days) or control group housing. Results revealed that exposure to both acute and social isolation can lead to an exacerbated inflammatory response to lipopolysaccharide (LPS). Subsequently, we examined if the stressors altered amyloid-beta production following the same inflammatory stimulus. Animals received LPS or saline injections once per day for seven consecutive days after the completion of either stress protocol or group housing. The contextual fear conditioning paradigm (CFC) was utilized to assess cognition. Brain tissue extractions were performed to quantify amyloid-beta protein levels. It is hypothesized that isolated animals will demonstrate cognitive deficits in CFC as well as increased brain amyloid-beta following LPS injections.

View Presentation

BIOL2018GERSTLE55536 BIOL

Mercury Risk to Piscivorous Wading Birds of the South Central United States

Type: Graduate
Author(s): Christopher Gerstle Biology Matthew Chumchal Biology Ray Drenner Biology
Advisor(s): Ray Drenner Biology Matthew Chumchal Biology

Mercury (Hg) is a toxic heavy metal that has contaminated all aquatic food webs and can pose a health risk to aquatic predators. Piscivorous birds are apex predators in aquatic systems that are exposed to mercury through the consumption of Hg-contaminated fish. Although there is extensive data on Hg concentrations in fish, the data on Hg concentrations in birds is relatively limited. I used a previously published relationship between Hg concentrations in piscivorous bird blood and Hg concentrations in prey fish to estimated Mg concentrations in the blood of four species of piscivorous wading birds in the south central U.S. [Little Blue Herons (Egretta caerulea), Green Herons (Butorides verescens), Great Egrets (Ardea albus) and Great Blue Herons (Ardea herodias)] from the concentration of Hg found in bluegill (Lepomis macrochirus). Estimated Hg concentrations in bird blood increased with the size of prey fish consumed and was lowest for Little Blue Herons and Green Herons, intermediate for Great Egrets and highest for Great Blue Herons. Estimated Hg concentrations in bird blood was greatest in ecoregions where conifer-adjusted mercury deposition was highest. Mercury risk to bird health varied with bird species and increased with Hg deposition. Little Blue Herons, Green Herons, Great Egrets and Great Blue Herons were at some level of risk in 14, 36, 86 and 100% of ecoregions, respectively. The threat of Hg to the health of piscivorous wading birds may not be unique to south central U.S. and may extend throughout the southeastern United States due to high Hg deposition and extensive forest coverage.

(Presentation is private)

BIOL2018HUYNH84096 BIOL

Determine Phytoene Desaturase Gene Copy Number in Hydrilla verticillata

Type: Undergraduate
Author(s): Tu Huynh Biology
Advisor(s): Dean Williams Biology Matt Hale Biology

Hydrilla verticillata is an invasive aquatic weed in the United States (U.S.) that has recently
developed resistance to the herbicide fluridone. In this study, we utilized genome walking and
quantitative real-time PCR to investigate the phytoene desaturase (PDS) gene copy number of
hydrilla samples with different ploidy levels. We asked 1) if copy number simply corresponds to the
ploidy level, and 2) if there is increased PDS copy number in resistant populations due to gene
duplication. Using qPCR and microsatellite loci to compare PDS copy number between diploid,
triploid and tetraploid samples, we found that diploid hydrilla from Africa showed higher PDS copy
number than triploid populations from the U.S. The results also indicated that there was no
significant difference in PDS gene copy numbers between the fluridone-resistant and -susceptible
triploid populations. Our study suggests that PDS amplification may not be a mechanism
responsible for fluridone resistance in hydrilla.

View Presentation

BIOL2018KHAN19280 BIOL

Methylmercury Contamination in Terrestrial Spiders along the Trinity River

Type: Undergraduate
Author(s): Amal Khan Biology Garrett Wallace Biology
Advisor(s): Matthew Chumchal Biology Ray Drenner Biology

Methylmercury (MeHg) is a toxic environmental contaminant found in all waterbodies on Earth. Aquatic emergent insects, such as mosquitoes and midges, can transfer MeHg from waterbodies to terrestrial ecosystems. Terrestrial shoreline spiders consume aquatic emergent insects and become contaminated with MeHg. Methylmercury-contaminated spiders can pose a risk to songbirds that consume terrestrial spiders. Because shoreline spiders have MeHg concentrations that reflect MeHg contamination of nearby aquatic ecosystems and are an important source of MeHg to songbirds, they have been proposed as a biosentinel species that can be used to estimate MeHg contamination of waterbodies. In this study, I used long-jawed orb weavers (Tetragnatha sp.) as a biosentinel species to examine MeHg contamination along the Clear Fork and the West Fork of the Trinity River, Fort Worth, Texas. The objectives of this study were to: 1) evaluate MeHg contamination in long-jawed orb weavers from two forks of the Trinity River, and 2) determine if the concentrations of MeHg in the spiders pose a risk to songbirds that feed on spiders. I collected 101 and 105 spiders along the Clear Fork and the West Fork, respectively. I used a Direct Mercury Analyzer to determine the total Hg concentration of the long-jawed orb weavers. Because MeHg is the primary species of mercury in spider tissues, I used total Hg as a proxy for MeHg. All spiders were contaminated with MeHg, with spiders along the Clear Fork having significantly higher MeHg concentrations than spiders along the West Fork. Methylmercury in spiders increased with spider size along the Clear Fork. Concentrations of MeHg in spiders along the Clear Fork and the West Fork were high enough to pose a risk to the physiology of nestling songbirds that feed on spiders.

(Presentation is private)

BIOL2018MALMQUIST59917 BIOL

Development and use of a G. mellonella infection model to discover novel virulence mutants in B. anthracis

Type: Graduate
Author(s): Jacob Malmquist Biology
Advisor(s): Shauna McGillivray Biology

Understanding bacterial virulence is important because it provides insight into the molecular basis behind bacterial infections. With the decreased efficacy of antibiotics due to the development of drug resistance, this knowledge could be used to identify specific targets for new pharmacological targets thereby strengthening our arsenal against these pathogens. Currently, our main mechanism by which to evaluate in vivo virulence is the mouse model (Mus musculus). While this model is effective, there are substantial ethical and resource constraints associated with vertebrate use. In order to provide alternative in vivo testing models, this study investigated the invertebrate wax worm larvae, G. mellonella, as an in vivo infection model for B. anthracis. To validate the ability of G. mellonella to discern attenuated bacterial strains, previously identified virulence mutants were constructed and assessed. This model proved capable of distinguishing between virulent and avirulent strains. Next, we tested whether G. mellonella could identify novel virulence mutants. A small collection of transposon mutants was screened for deficits in reactive oxygen species (ROS) survival and iron acquisition using in vitro screens. This yielded 10 attenuated mutants. These mutants were then assessed in G. mellonella and 2 were found to have an in vivo phenotype. These results demonstrate the potential effectiveness of G. mellonella as a future infection model and could increase the efficiency in the identification of novel bacterial virulence mutants.

View Presentation

BIOL2018MARTINEZ52539 BIOL

Effects of copper and temperature on the life stages of the invasive zebra mussel

Type: Graduate
Author(s): Julianna Martinez Biology
Advisor(s): Michael Misamore Biology

Dreissena polymorpha, zebra mussels, are an invasive species of freshwater bivalves that have recently spread into bodies of water across North America via the Great Lakes. Zebra mussels are mainly spread throughout the United States by their free-swimming larvae called veligers that are moved from waterbody to waterbody by human boat traffic, attributing to the success of their invasive spread. Once an adult zebra mussel population is established, they proliferate quickly and cause many problems to the ecosystem by their efficient filter feeding abilities. They also cause damage to boating and water treatment equipment by tightly attaching to many hard surfaces. Zebra mussels have recently entered many Texas waterways, indicating that they have possibly adapted to conditions outside of originally expected for a cold water species that are not representative of the Great Lakes region. The focus of this study was to look at various environmental factors which may affect zebra mussel survival and reproduction including temperature and the effects of a copper-based molluscicide, EarthTec QZ, as a potential mechanism of control. Zebra mussel survival and reproductive success were examined in various experiments to gain an overall understanding of the effects at all zebra mussel life stages.

View Presentation

BIOL2018MITCHELL9635 BIOL

Seasonality of Insect-Mediated Methyl Mercury from Emerging Odonates

Type: Undergraduate
Author(s): Will Mitchell Biology
Advisor(s): Matt Chumchal Biology Ray Drenner Biology

Methylmercury (MeHg) is an aquatic contaminant that can be transferred to terrestrial predators by emergent aquatic insects such as odonates (damselflies and dragonflies). We observed the effects of time on odonate-mediated MeHg flux (calculated as emergent odonate biomass MeHg concentration) in 20 experimental ponds and the potential risk to nestling red-winged blackbirds (Agelaius phoeniceus) posed by consuming MeHg-contaminated odonates. Emergent odonates were collected weekly from ponds containing four emergent traps per pond over an 9-mo period (February–October 2017). The MeHg flux from damselflies, aeshnid dragonflies, and libellulid dragonflies began in March and peaked in May, June, and July, respectively, and then declined throughout the rest of the summer. Nesting of red-winged blackbirds overlapped with peak odonate emergence and odonate-mediated MeHg flux. Because their diet can be dominated by damselflies and dragonflies, we tested the hypothesis that MeHg-contaminated odonates may pose a health risk to nestling red-winged blackbirds. Concentrations of MeHg in odonates exceeded wildlife values (the minimum odonate MeHg concentrations causing physiologically significant doses in consumers) for nestlings, suggesting that MeHg-contaminated odonates can pose a health risk to nestling red-winged blackbird.

(Presentation is private)