Filter and Sort







CHEM2018LE31589 CHEM

Silicon Nanotubes as A Platform for Platinum Nanocrystal Deposition

Type: Graduate
Author(s): Nguyen Le Chemistry & Biochemistry
Advisor(s): Jeffery Coffer Chemistry & Biochemistry

Porous silicon (pSi) is a unique nanostructured form of the elemental semiconductor Si. Due to its useful properties governed by its surface chemistry and porous morphology, pSi has been studied in the last few decades in diverse fields extending from electronic device technology to bio-relevant applications.1 Recently, one-dimensional porous nanotubes based on elemental Si (pSiNTs) with a tunable structure (sidewalls, inner void space and lengths) have been successfully synthesized.2 The well-defined structure of pSiNTs offers ample opportunities to study newly emerging properties of this material and innovative applications in multiple areas. For example, recent reports have revealed the use of SiNTs as an efficient template for loading superparamagnetic nanoparticles (Fe3O4), lithium storage and cycling, as well as acting as a template for formation of organometal perovskite nanostructures.3-5
Platinum (Pt) nanoparticles, both free-standing as well as anchored on various surfaces, have attracted widespread attention in nanocatalysis, electronics, and chemotherapeutics.6 In this work, it is suggested that pSiNTs after being functionalized with 3-(aminopropyl)triethoxysilane (APTES) can serve as a platform for Pt nanocrystal (Pt NC) formation. Particularly, incubation of APTES-functionalized SiNTs in potassium tetrachloroplatinate (II) (K2PtCl4) solution under ambient conditions subsequently yields Pt nanoclusters with sizes ranging from 1-3 nm on SiNTs. From high-resolution transmission electron microscopy (HRTEM), nanocrystals with characteristic lattice spacings associated with Pt (d = 0.21 nm) are observed on the nanotubes. The amount of Pt deposited on SiNTs can be sensitively tuned from 20-60 wt% (characterized by TEM Energy Dispersive X-ray Analysis, EDX) by varying concentration of K2PtCl4 and immersion time in this Pt salt precursor.
These findings suggest a new approach to prepare Pt NCs that are of potential benefit to a broad number of applications by using pSiNTs as a template. Further investigations into the properties of the newly discovered Pt NCs-SiNT composites are imperative to evaluate useful applications of this material.
REFERENCES
[1] Porous Silicon for Biomedical Applications, H. Santos, Ed. Cambridge: Woodhead Publishing, 2014.
[2] X. Huang, R. Gonzalez-Rodriguez, R. Rich, Z. Gryczynski, J.L. Coffer, Chem. Commun., 2013, 49, 5760-5762.
[3] P. Granitzer, K. Rumpf, R. Gonzalez, J. Coffer, M. Reissner, Nanoscale Res. Lett. 2014, 9, 413.
[4] R. Gonzalez-Rodriguez, N. Arad-Vosk, N. Rozenfeld, A. Sa'ar, J. L. Coffer, Small, 2016, 12, 4477-4480.
[5] A. T. Tesfaye, R. Gonzalez, J. L. Coffer, T. Djenizian, ACS Appl. Mater. Interfaces, 2015, 7, 20495-20498.
[6] A. Chen, and P. Holt-Hindle, Chem. Rev., 2010, 110, 3767-3804.

(Presentation is private)

CHEM2018LE33668 CHEM

New Eco-Friendly Porous Silicon Nanomaterials as Sustained Release Fertilizers

Type: Undergraduate
Author(s): Linh Le Chemistry & Biochemistry
Advisor(s): Jeffery L. Coffer Chemistry & Biochemistry

Urea is a low-cost, water-soluble fertilizer that is used as the major source of nitrogen in agricultural production. However, the problem with leaching, in which urea in soil is rapidly washed away through rain and irrigation, results in inefficiency in nutrient absorption, low crop yield, poor harvest, and economic failure for farmers (Broadbent 1958), as well as the environmental pollution of groundwater by the release of excessive amounts of nitrate, which adversely affects this non-rechargeable water source. Therefore, recent research attempts to design a suitable system to prolong the release of urea from water in soil to improve soil fertility, agricultural economy, and ground water protection. A prospective approach is to integrate urea into a stable matrix that releases the desired material with an optimal time window.

Porous Silicon (pSi) has been studied as the material of diverse interest, due to its surface chemistry and porous morphology that has promoted many nanotechnology advances, in conjunction with its biocompatibility and biodegradability (Canham 2014). Since pSi degrades slowly in aqueous media and does not react with the soil component, it is selected to be a possible matrix for sustaining urea release. pSi is believed to interact with urea via hydrogen bonds (via surface silanol species), and thus its porous structure is the key to trap urea particles for relatively long periods in water, while exposing the fertilizer to plants. This bioactive pSi material is produced from the eco-friendly Tabasheer-derived silica, during which pSi porosity is maintained (Kalluri et al. 2016). Loading of urea into pSi is carried out using ethanol as a solvent, with theoretical loadings ranging from 27-33% of the composite mass. Release kinetics of urea from water is currently being investigated using highly sensitive colorimetric assay that applies Jung’s method (Jung et al. 1975).

The urea-loaded pSi prepared in these experiments were characterized using several different techniques. X-ray diffraction (XRD) evaluates the crystallinity of pSi after fabrication, with the presence of three peaks consistent with a cubic unit cell structure [Si (111), (220), and (311)]. Thermal gravimetric analysis (TGA) gives the mass loss percentage between melting (132oC) and boiling (203oC) points of urea, which represents the practical loading of urea in a given sample. The results deviate 1-2% from the theoretical loading percentage. TGA also shows the stability of the composite over two months at room temperature, with the recent loading measurement analyses consistent with the previous ones. Differential scanning calorimetry (DSC) analysis confirms that the urea is incorporated in the pSi matrix. Loading and characterization studies were conducted in triplicate to ensure reproducibility of results.

(Presentation is private)

CHEM2018MEHMOOD32880 CHEM

An Orbital-Overlap Complement to Atomic Partial Charge

Type: Graduate
Author(s): Arshad Mehmood Chemistry & Biochemistry
Advisor(s): Benjamin G. Janesko Chemistry & Biochemistry

Atomic partial charges obtained from computed wavefunctions are widely used for interpreting quantum chemistry simulations and chemical reactivities of molecules, solids, surfaces, and nanoparticles. In many cases, partial charge alone gives an incomplete picture of reactivity: PhS(-) is a better nucleophile compared to PhO(-) in SN2 reactions with MeI, though PhO(-) has a more negative charge on the nucleophilic atom, the carbons of benzene and cyclobutadiene, or those of diamond, graphene, and C60, possess nearly identical partial charges and very different reactivities, deprotonated amides perform nucleophilic attack via the less negative nitrogen, rather than the more negative oxygen, in anionic cyclization of o-alkynyl benzamides, halide anions F(-), Cl(-), Br(-) and I(-) have identical charges but different nucleophilicities, carbons in aromatic benzene and anti-aromatic cyclobutadiene have nearly identical partial charges, but different reactivities. Our atomic overlap distance complements computed partial charges by measuring the size of orbital lobes that best overlap with the wavefunction around an atom. Compact, chemically stable atoms tend to have overlap distances smaller than chemically soft, unstable atoms. Combining atomic charges and overlap distances captures trends in aromaticity, nucleophilicity, allotrope stability, and substituent effects. Applications to recent experiments in organic chemistry (counterintuitive Lewis base stabilization of alkenyl anions in anionic cyclization), nanomaterials chemistry (facile doping of the central atom in Au7 hexagons) and selective binding of ligands in proteins illustrate this combination’s predictive power.

View Presentation

CHEM2018MONTOYA23430 CHEM

Steps Towards the Synthesis of Pancratistatin-Type Analogs

Type: Graduate
Author(s): Adam Montoya Chemistry & Biochemistry
Advisor(s): David Minter Chemistry & Biochemistry

Amaryllidaceae isoquinoline alkaloids, as well as their analogs, have long been of interest in research for drug discovery due to their biologically active nature. Many of these compounds have been found to be anti-tumor agents.1 Moreover, there have also been studies that show the effectiveness of these molecules against diseases such as Yellow Fever and other RNA-containing flaviviruses.2 Though these compounds are pharmaceutical drug prospects, their low natural abundance lowers that potential.3 For this reason, many synthetic chemists have pursued novel routes to synthesize a wide variety of these compounds.
Techniques toward the synthesis of Pancratistatin-type natural products are presented herein. Manipulations were tested and optimized on a model system to save both time and funds while developing a synthetic pathway to be utilized in the formation of more complex compounds. Setbacks such as controlling the stereochemistry of a tetrasubstituted alkene reduction have been encountered. However, adjustments are being made to avoid such difficulties. Ideally, the proposed scheme will ultimately allow for the synthesis of multiple biologically active Phenanthridone analogs.

(Presentation is private)

CHEM2018NIEBUHR15382 CHEM

Functional modifications and electronic influences on tetra-aza macrocyclic Cu(II) complexes

Type: Undergraduate
Author(s): Brian Niebuhr Chemistry & Biochemistry Marianne Burnett Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry

A library of novel tetra-aza macrocyclic molecules, specifically 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene derivatives, capable of chelating metal ions in vivo have been synthesized. Applications of these complexes are currently being pursued as a 1) therapeutic focusing on radical scavenging and metal chelation and 2) diagnostic tool such as magnetic resonance imaging (MRI) contrast agents when complexed with specific metal ions. However, a full study of the electronic effects imparted by substitution to the pyridyl moiety (position 13) and the subsequent impact on the metal center have not been explored. The objective of the present study is to characterize metal complexes of four tetra-aza macrocyclic metal chelating molecules. The pyridyl functional groups studied include: A) unmodified pyridyl, B) p-hydroxyl, C) p-nitrile, and D) m-hydroxyl modified pyridyls on a pyclen base structure (position 13). Notable progress has been made in developing an optimal procedure for obtaining copper (II) complexes and will be presented. Analysis of the resulting copper (II) complex of the p-nitrile tetra-aza macrocycle indicate a six-coordinate metal center based on X-ray diffraction. UV-Visible spectroscopy and electrochemistry help to confirm donor strength among the ligand series as well as a comparison to other tetra-aza macrocycles. Ultimately, this project is focused on understanding the electronic contribution of these functional groups on the pyridine ring and the influence of the ligand and complexed systems as therapeutic and diagnostic agents.

(Presentation is private)