BIOL2023WHITMORE34464 BIOL
Type: Graduate
Author(s):
Kimberlee Whitmore
Biology
Advisor(s):
Matt Chumchal
Biology
Location: Second Floor, Table 5, Position 1, 1:45-3:45
View PresentationThe Great Salt Lake in Utah is an important stopover point for many migratory bird species. Birds that stop to breed or forage at the Great Salt Lake may be at risk of mercury contamination due to high levels of methylmercury that are found in the lake. The purpose of this study was to examine the transfer of mercury from the lake into the terrestrial food web using organisms at the base of the food web. During the summers of 2019-2021 western spotted orb weaver spiders (Neoscona oaxacensis) and, when possible, brine flies (Ephydra sp.) were collected from various sites on Antelope Island. These specimens were analyzed for total mercury content using a Nippon MA-3000. In addition, satellite imagery and GIS software were used to document the approximate distance from the collection sites to the water surface. We examine differences between years, study sites and spider body size. We also examined the correlation between mercury levels and environmental conditions.
CHEM2023CLATON38544 CHEM
Type: Graduate
Author(s):
Liam Claton
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
Location: Basement, Table 1, Position 3, 11:30-1:30
View PresentationBarriers to rotation within triazine compounds have been previously explored by Katritzky and Birkett [1-2], but these studies have been limited to differences in the substituent groups on the triazine as well as the degree of substitution (mono, di, tri). This study explores how the barriers to rotation within triazine containing compounds are affected by solvent and protonation state. Overall, these molecules are of interest due to their wide range of applications in dendrimer and macrocycle synthesis as well as pharmaceutical drug development [3-4]. The results of this study illustrate how solvent selection can significantly impact the distribution of rotational isomers (rotamers) and how barriers to rotation can be increased by protonation of the triazine ring.
CHEM2023GRUBBS61709 CHEM
Type: Graduate
Author(s):
Maegyn Grubbs
Chemistry & Biochemistry
Sergei Dzyuba
Chemistry & Biochemistry
Advisor(s):
Jeff Coffer
Chemistry & Biochemistry
Location: Third Floor, Table 10, Position 1, 11:30-1:30
View PresentationMetal-halide perovskites are crystalline materials that work as a semiconductor in both Light Emitting Diodes (LEDs) and solar cells. In general, perovskites possess the formula ABX3. For this project, the A site is an organic molecule such as Methylammonium (MA), the B site is Lead, and the X site is Bromide. While perovskites are easily fabricated, their crystal size and number of defects present are challenging to control. Defects cause LEDs to be less stable and/or less photoluminescent (bright) and cause solar cells to be less efficient at converting light to energy. One approach to reduce the number of defects is to use ionic liquids during perovskite formation. Ionic liquids are compounds made of ions in the liquid state due to a low melting temperature. They can be added to the perovskite precursor solution to slow down the crystallization process so that fewer defects are created. The goal of this project is to create new metal halide perovskites in the presence of selected ionic liquids, evaluate their structure and photophysical properties, with the long-term goal of creating new LEDs that are both stable and efficient.
In this project, cetyl-ionic liquids (cetyl meaning 16 carbon chains) were investigated for their effects on perovskite structure and light emission. The three ionic liquids were investigated: [C16-mim]Br (referred to as "IL1"), [C16-py]Br ("IL2"), and [C16-C1pyrr]Br ("IL3"). Variations on the addition method of ionic liquids to the perovskite precursor were studied as well. It was hypothesized that the inclusion of cetyl-ionic liquids will protect the perovskite films from the environment (increasing stability) by providing a hydrophobic layer on the surface and will improve the electronic properties by filling in pinholes that cause defects. It is found that perovskite films with IL3 are more photoluminescent than the perovskite films formed with IL1, IL2, or no IL (control). Preliminary experiments varying the addition method of IL3 during film formation have shown that the perovskite films are brightest when IL3 is added to both the precursor and the antisolvent layers at the beginning of the fabrication process. These results, along with detailed structural characterization of a given perovskite film, will be discussed in this presentation.
CHEM2023MENKE34348 CHEM
Type: Graduate
Author(s):
Alexander Menke
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
Location: Basement, Table 6, Position 1, 11:30-1:30
View PresentationDating back to 1550 B.C., ancient civilizations used moldy bread and medicinal soil to treat infections and wounds. Today, antibiotics are commonly used to treat bacterial infections. Salvarsan, the first antibiotic, was developed in 1910, followed by penicillin in the late 1920s. However, the widespread use of antibiotics and limited research has resulted in the emergence of antimicrobial resistance, posing a global threat. To address this, developing new antibiotics is crucial. Vancomycin, a potent antibiotic isolated in 1955 and synthesized in the late 1990s, is a target for this purpose. Despite its effectiveness, vancomycin is challenging to produce, with yields not exceeding 5%. Thus, this project aims to create a structure in four steps, with a yield greater than 50% that resembles vancomycin’s iconic 3-D bowl shape.
CHEM2023OJEDAHERNANDEZ61683 CHEM
Type: Graduate
Author(s):
Leonardo Ojeda Hernandez
Chemistry & Biochemistry
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
Giridhar Akkaraju
Biology
Location: Basement, Table 11, Position 2, 1:45-3:45
View PresentationPlatinum compounds play an important role as anticancer agents. Their ability to bind to DNA in the nucleus (by a process known as intercalation within DNA base pairs) result in DNA damage and cell death. Unfortunately, these platinum-containing compounds lack specificity toward cancer cells and attack normal healthy cells that results in significant side effects as a consequence (loss of hair, nausea, among others).
Our group has developed a method to incorporate platinum on the surface of our silicon Nanotubes using (3-Aminopropyl) triethoxysilane (APTES) as a functional arm to the Nanotubes. The Silicon nanotubes have attracted great attention in applications relevant to diagnosis and therapy, owing in part to its biocompatibility and biodegradability in cells.
Once inside the cell, platinum is released slowly, thus allowing an interaction with DNA. Our previous results using this technology showed significant toxicity on a type of cancer cell known as HeLa. While these findings are promising, specificity has not yet been achieved.
Cancer activates signaling pathways that translates on overexpression of specific proteins/receptors. Particularly, folate receptors (FR) are present in 90-98% of ovarian, prostate, uterus, breast, as well as some adenocarcinomas. FR expression is very limited in normal cells and generally not accessible to blood flow which makes it a suitable and promising system to target cancer. These receptors are glycopolypeptides that present high affinity for folic acid (FA).
A viable strategy has been identified, involving the conjugation of a molecule known as glutathione to act as a linker to the surface of the silicon-based platinum nanoparticles through N-Hydroxysuccinimide (NHS) activation, followed by substitution with folic acid.
The cellular evaluation of this material shown high cytotoxicity against Hela cells and selectivity, in compare with material without Folate.
CHEM2023PATTERSONGARDNER6470 CHEM
Type: Graduate
Author(s):
Casey Patterson-Gardner
Chemistry & Biochemistry
April Cannon
Chemistry & Biochemistry
Gretchen Pavelich
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
Location: Third Floor, Table 3, Position 2, 11:30-1:30
View PresentationPeptidomimetic macrocycles are of ever-growing interest to the field of pharmacology as candidates for inhibiting supposed "undruggable" sites (such as protein-protein interactions). An important property of pharmacophores within drug development is the partition coefficient (often expressed as logP or logD), which measures the ability of a molecule to partition between aqueous and organic media, effectively expressing the ability for a drug to diffuse into a cell from the bloodstream. Our group has previously synthesized several amino acid-containing triazine macrocycles through facile three-step procedure yielding folded, sometimes dynamic, macrocycles in good yields. With twelve macrocycles, a trend in logD values has emerged, allowing for the rapid prediction of the macrocyclic conformation per its respective logD values. Each macrocycle is folded, but the extent of triazine-triazine overlap, side chain van der Waals interactions, and shielding of its central proton is reflected in the divergence of the macrocycle's logD from a central trendline. The ability to predict the macrocycle's logD values via additive, atomistic, algorithms is also shown to reveal this divergent trend. Structures of these triazine macrocycles were elucidated through proton and nOesy/rOesy NMR.
CHEM2023SMITH4474 CHEM
Type: Graduate
Author(s):
Katherine Smith
Chemistry & Biochemistry
Cameron Bowers
Biology
David M. Freire
Chemistry & Biochemistry
Magy Mekhail
Chemistry & Biochemistry
Timothy M. Schwartz
Chemistry & Biochemistry
Advisor(s):
Kayla Green
Chemistry & Biochemistry
Location: Second Floor, Table 8, Position 1, 1:45-3:45
View PresentationOxidative stress is caused by the accumulation of reactive oxygen species (ROS) in the body and is
a key player in many maladies, including neurological diseases like Parkinson’s and Alzheimer’s disease.
Superoxide dismutase (SOD) metalloenzymess are capable of transforming the common ROS molecule
superoxide (O2) into less toxic species such as H2O or O2, thus protecting the body from harmful reactions of
superoxide. Synthetic metal complexes have shown promise as SOD mimics and can be effective alternatives
to therapeutic dosing of SOD enzyme for oxidative stress. In this work, we present a series of 12-membered
tetra-aza pyridinophanes (Py2N2) and the corresponding copper complexes with substitutions on the 4-position
of the pyridine ring. The SOD functional mimic capabilities of the Cu[Py2N2]Cl series were explored using a
UV-Visible visible spectrophotometric assay. Spectroscopic, potentiometric, and crystallographic methods were
used to explore how the electronic nature of the 4-position substitution affects the electronics of the overall
complex, and the SOD biomimetic activity of each complex’s activity as a SOD mimic. This work is an initial
step toward developing these Cu[Py2N2]Cl complexes as potential therapeutics for neurological diseases by
mimicking SOD’s capabilities and protecting the body from oxidative stress.
CHEM2023TA357 CHEM
Type: Graduate
Author(s):
Daniel Ta
Chemistry & Biochemistry
Jeanne Favret
Chemistry & Biochemistry
Ernesto Rodriguez
Chemistry & Biochemistry
Advisor(s):
Sergei Dzyuba
Chemistry & Biochemistry
Location: Second Floor, Table 5, Position 1, 11:30-1:30
View PresentationSquaraine dyes are a class of small luminescent molecules with diverse applications in physical sciences, medicine, and engineering. Although widely used, the current synthetic approaches are neither modular nor environmentally friendly. Therefore, this poster will present our efforts to develop facile, diverse, and efficient synthetic methods for squaraine dyes, based on green chemistry and sustainability principles.
CHEM2023THOMAS10203 CHEM
Type: Graduate
Author(s):
Shamberia Thomas
Chemistry & Biochemistry
Aisha Fahim
Chemistry & Biochemistry
Jenny Pham
Chemistry & Biochemistry
Advisor(s):
Onofrio Annunziata
Chemistry & Biochemistry
Location: Third Floor, Table 5, Position 1, 1:45-3:45
View PresentationYield of protein crystallization from metastable liquid-liquid phase separation
Aisha Fahim, Shamberia Thomas, Jenny Pham, Onofrio AnnunziataThe high demand in pharmaceutical and biotechnological products has motivated the need for economically sustainable alternatives to chromatography for protein purification. One promising alternative for protein purification is protein crystallization. However, protein crystallization is a complex, not well understood process. In our previous work, a new strategy for enhancing protein crystallization from metastable protein-rich droplets was examined. This requires the use of two additives. The first additive (inducer) promotes liquid-liquid phase separation (LLPS) in a protein aqueous sample. The second additive (modulator) alters the composition of droplets and their thermodynamic stability. A protocol for determining yields of LLPS-mediated protein crystallization was developed. This protocol was used to examine the effect of various inducer-modulator pairs on crystallization of lysozyme, a model protein.
ENSC2023DEOYARZABAL5254 ENSC
Type: Graduate
Author(s):
Manuel de Oyarzabal
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Environmental Sciences
Location: Basement, Table 8, Position 1, 1:45-3:45
View PresentationAs urbanization continues to fragment landscapes, wildlife become more isolated and find it harder to access the necessary resources to survive. Finding ways to connect fragmented landscapes is necessary for wildlife, but it is important to know what areas wildlife currently occupy. Trees provide valuable habitat for many species, but it is important to know what tree species are the most beneficial, and where these are located. This study used point locations of five tree species, bobcats, and coyotes to identify the density of each in Tarrant County. We identified that cedar elms have the most overlap with both bobcats and coyotes. The areas with high densities of cedar elms are the best for and bobcats, which is an indicator that they will be good for other species. Therefore these areas should be targeted for conservation and restoration.