BIOL2017ORTEGARODRIGUEZ29751 BIOL
Type: Graduate
Author(s):
Celeste Ortega-Rodriguez
Biology
MacGregor Hall
Biology
James Kennedy
Biology
Kyle Lauck
Biology
Kirkland Polk
Biology
Edward Williams
Biology
Advisor(s):
Matt Chumchal
Biology
Ray Drenner
Biology
(Presentation is private)Mercury (Hg) is a hazardous contaminant that can be transferred from aquatic to terrestrial environments by emerging aquatic insects. Terrestrial predators, such as spiders, that live along shorelines of water bodies may consume emerging aquatic insects and become contaminated with Hg. Mercury-contaminated spiders may pose a risk to arachnivorous songbirds. The degree to which most families of spiders are contaminated with Hg and the risk they pose to songbirds is not well understood. The objectives of this study were to determine 1) Hg concentrations in seven families of shoreline spiders, 2) if each family was connected to the aquatic food web via the consumption of emergent insects and 3) determine the risk these spiders pose to arachnivorous birds. We collected representatives from seven families of spiders along with a variety of aquatic and terrestrial plant, invertebrate, and fish samples from 10 ponds located in north Texas, USA. We used methylmercury (MeHg) concentrations in combination with stable isotopes of nitrogen (δ15N) to determine if each family of shoreline spider was connected to the aquatic food web. All spider taxa in the present study were contaminated with Hg and connected to the aquatic food chain. We calculated wildlife values for various songbirds to determine health risks that Hg-contaminated spiders may pose to songbirds. Spider based wildlife values revealed that six of the seven families of shoreline spiders examined had concentrations of MeHg high enough that they may pose a risk to arachnivorous songbirds that forage for spiders along shorelines of ponds.
BIOL2017ROUSH11987 BIOL
Type: Graduate
Author(s):
Kyle Roush
Biology
Advisor(s):
Marlo Jeffries
Biology
View PresentationGlobally, there is demand for increased meat production. Texas, a leader in cattle production in the United States, has met this demand utilizing confined animal feeding operations (CAFOs) containing hundreds to thousands of cattle. To increase production efficiency, cattle receive growth-promoting hormone treatments to enhance growth and increase cattle mass. These hormonally-active compounds (HACs) have been found in cattle waste, feedlot runoff, and surface waters. The ultimate goal of this project was to identify watershed characteristics that promote the transport of cattle-associated HACs to surface waters. Therefore, the objectives of this pilot study were to: 1) identify and define a study area for evaluating HACs in Texas watersheds and 2) begin preliminary assessments of HAC activity in watersheds downstream of cattle feedlots. A suitable study site was identified using satellite imagery, elevation data and the ArcGIS hydrology tool pack. Sample sites were selected within this area based on geographical features and position to CAFOs. Caged fish studies, followed by analysis of estrogen-responsive gene expression, were utilized to assess the presence and activity of HACs. Though no statistically significant alterations in estrogen-responsive gene expression metrics were observed, females from three of the four sites downstream of CAFOs experienced 2.9 to 3.7-fold and 1.9 to 5.3-fold decreases in the expression of estrogen receptor alpha and vitellogenin, respectively. This could have larger implications as previous research by Miller et al. 2007 forecasted that a 50% reduction in vitellogenin plasma concentration could result in a 41.8% decrease in average population size after one year.
CHEM2017BODIFORD28560 CHEM
Type: Graduate
Author(s):
Nelli Bodiford
Chemistry & Biochemistry
Steven McInnes
Chemistry & Biochemistry
Nico Voelcker
Chemistry & Biochemistry
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
(Presentation is private)The combination of inorganic porous silicon (pSi) and flexible biocompatible polymers has been shown to yield more beneficial hybrid scaffolds for tissue engineering (i.e. use of synthetic materials to facilitate healing). PSi has a variety of tunable properties, including pore size, pore volume and non-toxic degradation; the addition of a flexible polymer component provides the benefit that such a construct can easily conform to any shape of the actual site of an injury/disease, suggesting that pSi/polymer composites can be suitable candidates for localized drug delivery.
In this work, composite materials consisting of oxidized porous silicon (ox-pSi) with particle size of ~ 30 μm and pore size of 40-100 nm and thin polycaprolactone (PCL) films. PCL solid films were fabricated from an initial fibrous structure that was exposed to a temperature of 65-80 oC causing fusion of these fibers into a solid film. Ox-pSi particles were then physically embedded into PCL films, resulting in ~30-40% loading of ox-pSi (ox-pSi/PCL film). Ox-pSi particles of the composite were loaded with a model cytotoxic (anticancer) drug-camptothecin (CPT). Drug release from the ox-pSi particles alone and ox-pSi/PCL film composites was monitored fluorometrically, showing distinct release profiles for each material.
Ox-pSi/PCL film composites release a CPT payload in accordance with the Higuchi release model and showed a significant decrease in burst effect compared to ox-pSi particles only. In addition, composite evolution after 5 weeks in a given solution was examined by determining weight loss and surface morphology/composition (FESEM). Overall weight loss of the composites was less then 10% mainly attributed to pSi particles detachment and dissolution.
CHEM2017BREWER4655 CHEM
Type: Graduate
Author(s):
Samantha Brewer
Chemistry & Biochemistry
Advisor(s):
Kayla Green
Chemistry & Biochemistry
View PresentationIron plays a pivotal role in metabolism and transport processes in nature but can also be used to accomplish important chemical transformations on the bench top; recently, iron(II) salts have been shown to catalyze direct Suzuki – Miyaura coupling of N-heterocyclic compounds and arylboronic acid derivatives in the presence of oxygen. Presented herein are three tetra-aza macrocyclic iron(III) complexes [L1Fe(III)(Cl)2]+ (L1Fe), [L2Fe(III)(Cl)2]+ (L2Fe), and [L3Fe(III)(Cl)2]+ (L3Fe) [L1 (Pyclen)=1,4,7,10-tetra-aza-2,6-pyridinophane; L2 =3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-trien-13-ol; L3 =3,6,9,15-tetra-azabicyclo[9.3.1]penta-deca-1(15),11,13-trien-12-ol] that catalyze the coupling of pyrrole and phenylboronic acid. Following the synthesis and reactivity studies, investigation into the oxidation state of the iron center throughout the catalytic cycle was explored. The results of this work to date will be presented and will facilitate the understanding of challenging chemical reactions catalyzed using inexpensive earth abundant metals such as iron.
CHEM2017DACHILLE1815 CHEM
Type: Graduate
Author(s):
Anne D'Achille
Chemistry & Biochemistry
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
View PresentationNanomaterials based on cerium (IV) oxide, CeO2, have been extensively investigated due to interesting chemistry from a readily available transition between Ce3+ and Ce4+. Oxygen vacancies present in the oxide lattice combined with the available redox transition gives CeO2 materials antioxidant and enzyme mimetic behavior. The addition of tri-valent, fluorescent ions such as Eu3+ further increase the oxygen vacancy concentration, may allow control over the Ce3+/Ce4+ ratio, and may add fluorescence to the doped material. These properties give europium doped cerium oxide (EuCeO¬2) potential applications within biological systems.
Eumelanin is a complex dark brown pigment originating from the oxidation and oligomerization of tyrosine. The pigment can also be synthesized through the auto-oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA). While its structure has not been fully determined, eumelanin has shown antioxidant and free-radical scavenging behavior, strong UV-VIS absorption, and conductive properties. The pigment has been researched for its radiation damage protection, and for activity against amyloids associated with Parkinson’s and Alzheimer’s disease.
Our research thus far has focused on the controlled synthesis of various EuCeO2 nanomaterials, and their interaction with the auto-oxidation of L-DOPA to eumelanin as measured through the observation of eumelanin fluorescence at 471 nm. Nanorods, nanowires, and nanocubes of EuCeO2 were each synthesized with a range of dimensions and europium content. EuCeO2 nanorods and nanocubes were synthesized through precipitation of EuCe(OH)3 and a subsequent hydrothermal reaction between 100°C and 180°C. Nanowires were synthesized using electrospinning and annealing techniques. All materials were analyzed using transmission electron microscopy (TEM), energy dispersive x-ray analysis (EDX), and powder x-ray diffraction (XRD).
The presence of CeO2 or EuCeO2 materials in L-DOPA containing solutions consistently suppressed the eumelanin-associated fluorescence intensity. Various parameters, including temperature, pH, nanomaterial concentration and morphology, and europium doping concentration have been evaluated for their potential impact on the evolution of eumelanin from L-DOPA in the presence of these EuCeO2 nanomaterials.
CHEM2017KALLURI41876 CHEM
Type: Graduate
Author(s):
Jhansi Kalluri
Chemistry & Biochemistry
Giridhar Akkaraju
Biology
Jeffery Coffer
Chemistry & Biochemistry
Julianna West
Biology
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
View PresentationPlant based nanotechnology for drug delivery and anti-inflammatory therapy
Jhansi Kalluri, Julianna West, Giridhar Akkaraju, Leigh Canhm and Jeffery L. Coffer*
Abstract:
Chronic inflammation is one of the characteristics of Alzheimer’s, cancer, and selected auto inflammatory diseases. Medicinal plant extracts rich in polyphenols have shown the ability to aid in the prevention of degenerative diseases such as Alzheimer’s due to their anti-inflammatory and anti-oxidant properties. One of the problems of using polyphenols to treat these diseases is their potentially low bioavailability and short half-life in vivo. An alternative to using free compound is to use plant polyphenol-loaded nano/micro particles to increase their bioavailability and half-life.
Equisetum arvense is a silicon accumulator plant serving as a source for a viable eco-friendly route for fabricating nanostructured porous silicon (pSi) drug delivery carriers; at the same time, if selected plant components contain medicinally-active species as well, then the single substance can provide not only the nanoscale high surface area drug delivery carrier (pSi), but the drug itself. With this idea in mind, porous silicon was fabricated from stems/fronds of the silicon accumulator plant Equisetum arvense and the anti-inflammatory activity of the leaf components (aqueous ethanol extract) of Equisetum arvense was tested using a luciferase assay. We evaluated the dose dependent activity of the extract to inhibit TNF-induced NF- kB activation. Our long-term goal is to measure the anti-inflammatory activity of extract-loaded porous silicon particles in a sustained manner.
CHEM2017LE35834 CHEM
Type: Graduate
Author(s):
Nguyen Le
Chemistry & Biochemistry
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
View PresentationSemiconducting silicon (Si) is a promising element that has been extensively studied in various fields ranging from microelectronics to bio-relevant applications.1 In fact, nanostructured porous silicon has received widespread attention due to its unique chemical and physical characteristics.1 Another relatively more well-defined example of nanostructured silicon is Si nanotubes (SiNTs) with well-characterized sidewalls, inner void space and lengths, allowing opportunities to study its potential properties in diverse fields, such as Li ion batteries, solar cells.2,3 In particular, SiNTs are potential vectors in drug delivery systems. The available interior free space of the NTs offer the material the ability of confining a desired amount of payload of therapeutic agents. Moreover, the available silanol groups on the surface of the NTs also enable attachment to a linker, whose other end is subsequently attached to a drug molecule of interests. Within a biological environment, therapeutic molecules of interest can be released in a sustained manner into targeted sites through either dissolution of the SiNT carriers or their detachment from the linkers.
In terms of therapeutic candidates, cisplatin has been renowned for its ability to treat a variety of cancers including lymphomas, carcinomas, etc. Due to low chloride ions concentrations (4-12mM) in the intracellular environment of cancer cells, chloride ligands on cisplatin are readily displaced by water, producing either cis-[PtCl(NH3)2(H2O)]+ or cis-[Pt(NH3)2(H2O)2]2+ aquo complexes, which actively target DNA and trigger apoptosis.4 However, since drug resistance is developed in cancer cells and undesirable interactions between cisplatin and other biological molecules occur, the therapeutic effects become diminished and negative side effects are also observed.5,6 In order to enhance the therapeutic efficiency of cisplatin, in this project, SiNTs are employed as carriers that can be loaded with cisplatin and potentially deliver the drugs to the desired sites. For the purpose of controlling the release of cisplatin from SiNTs, 3-aminopropyltriethoxysilane (APTES) is employed as the linker, which can covalently bind to the nanotubes through the available silanol groups on the surface, and the amino group on the other end of APTES can subsequently coordinate cisplatin.
In this study, SiNTs with lengths less than 1 µm are used (for optimal cellular uptake), and a sidewall thickness ~ 10 nm for desirable dissolution within a biological environment. Moreover, the distinct porous morphology of the nanotubes permits infiltration of the molecules of interest. By varying solvents (acetone and toluene) of APTES solution and functionalization time, the amount of cisplatin loaded into SiNTs can be modulated ranging from 20-40 weight %, thereby suggesting the ability of SiNTs to carry therapeutic agents.
References
1. Canham, L.T. Hanbook of Porous Silicon. Switzerland: Springer International Publishing AG, 2014.
2. Tesfaye A, Gonzalez R., Coffer J., Djenizian T. Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries, ACS Appl Mater. Inter. 2015, 7, 20495−20498.
3. Gonzalez-Rodriguez R., Arad-Vosk N., Rozenfeld N, Sa’ar A, Coffer JL (2016) Control of CH3NH3 PbI3 Perovskite Nanostructure Formation through the Use of Silicon Nanotube Templates, Small 2016, 12, 4477–4480.
4. Ma P., Xiao H., Li C., Dai Y., Cheng Z., Hou Z., Lin J. Inorganic nanocarriers for platinum drug delivery, Materials Today 2015, 18(10), 554-564.
5. Martin L.P., Hamilton T.C., Schilder R.J. Platinum Resistance: The Role of DNA Repair Pathways, Clin Cancer Res. 2008, 14(5):1291-1295.
6. Xue X., You S., Zhang Q., Wu Y., Zou G., Wang P. C., Zhao Y., Xu Y., Jia L., Zhang X., Liang X. Mitaplatin Increases Sensitivity of Tumor Cells to Cisplatin by Inducing Mitochondrial Dysfunction, Mol. Pharmaceutics, 2012, 9 (3), 634–644.
CHEM2017OCHOA7485 CHEM
Type: Graduate
Author(s):
Charles Ochoa
Chemistry & Biochemistry
Advisor(s):
David Minter
Chemistry & Biochemistry
View PresentationVarious total syntheses of the Lycorine-type pharmacologically active alkaloids hippadine and pratosine have been developed. However, most of these synthetic routes require prohibitively expensive materials and/or achieve yields that are subpar, making these schemes unlikely to be used in an industrial setting. Current research involves developing better synthetic methods for these two alkaloids starting with a 6,7-disubstituted isoquinoline. These syntheses are appealing since they utilize readily available starting materials and avoid expensive catalysts. The key step in the synthetic scheme centers around an intramolecular de Mayo photocyclization which involves a reaction between an alkene moiety in the isocarbostyril system and a 1,3-diketone (a functionalized tether on nitrogen), which forms a third ring in the structure of the molecule. Research on a model system (an isocarbostyril without the substituents at positions 6 and 7) for these natural products has been done in order to elucidate the optimal conditions for each step on the synthetic strategy. Initial attempts were made in order to synthesize the 6,7-disubstituted isocarbostyril with the 1,3-diketone tether so that the deMayo photocyclization could be performed. However, the established synthetic strategy led to compounds along the synthetic route that had very undesirable solubility properties. To resolve this issue, the substituents were replaced with bulkier, more non-polar moieties in order to increase the solubility of the compound in ethyl ether.
GEOL2017ANDREWS23076 GEOL
Type: Graduate
Author(s):
Virginia Andrews
Geological Sciences
Advisor(s):
Richard Hanson
Geological Sciences
View PresentationThe Barby Formation makes up part of the Konkiep Terrane, which is a major Mesoproterozoic arc complex along the Kalahari craton margin in southwest Namibia. Previous mapping indicates that the Barby Formation contains a laterally and vertically complex series of basaltic to rhyolitic lavas, rhyolitic ignimbrites, and associated hypabyssal intrusions. Our new work shows that significant basaltic to andesitic pyroclastic successions are also present within the unit and record a wide variation in eruption styles.
Detailed mapping reveals the presence of Hawaiian, Strombolian and phreatomagmatic pyroclastic deposits forming successions up to X m thick emplaced close to source vents and intercalated with fine-grained lacustrine strata in an area ~20 km2. The most abundant deposits consist of basaltic to andesitic spatter accumulations formed from vigorous lava fountains during Hawaiian-style eruptions. These sequences show random vertical transitions on the scale of a few meters from moderately agglutinated to densely welded spatter, which reflect variations in pyroclast accumulation rates. Individual spatter pieces are up to x cm long. The densely welded spatter forms lava-like units, but we see no evidence of clastogenic lava flows. Sequences of basaltic lapillistone with dispersed ribbon and fusiform bombs up to 50 cm across record Strombolian eruptions during episodes of lower magma flux without involvement of external water. The spatter accumulations typically grade upward into phreatomagmatic deposits containing minor amounts of spatter and cauliflower bombs mixed with poorly vesicular lapilli tuff, in which particle shapes are controlled mostly by fracture surfaces rather than broken bubble walls; up to 30% lacustrine sediment is intermixed with juvenile lapilli and ash in these deposits. We infer that changes in eruptive style in this part of the arc sequence were controlled at least partly by variations in magma ascent rates at shallow depths, as documented in numerous other volcanic provinces. Transitions from Hawaiian to phreatomagmatic eruptions may at least partly reflect a decrease in magma flux in the presence of external water, lowering the magma-to-water mass ratio so that hydrovolcanic explosions became possible.
GEOL2017GOMEZ40480 GEOL
Type: Graduate
Author(s):
Ali Ricardo Gomez
Geological Sciences
Advisor(s):
Xiangyang Xie
Geological Sciences
View PresentationNorthwestern South America is highly deformed due to the transpressive boundary with complex interactions among the Caribbean plate, the South American plate, the Nazca plate and the Panama arc. Previous studies suggest that the Cenozoic uplifting of the Mérida Andes and Eastern Cordillera of Colombia affected sediment dispersal patterns in the region, shifting from a Paleocene foreland basin configuration with an axial major fluvial system, to the modern configuration of isolated basins with distinctive sediment dispersal patterns. Well-exposed Cretaceous to Pliocene strata in the Táchira saddle between the Easter Cordillera and Merida Andes provide a unique opportunity to test proposed sediment dispersal patterns in the region. U-Pb detrital zircon geochronology and supplementary XRD heavy mineral identification were used together to document provenance of Cretaceous to Pliocene clastic rocks collected from the area of La Alquitrana. Results from the U-Pb detrital zircon geochronology show that there are six age groups recorded in this samples. Two groups related with Precambrian Guyana shield Terranes and Putumayo basement in the Eastern Cordillera, and four groups related to different magmatic episodes during the Andean Orogenic process. Three major paleogeography changes were also recorded in these detrital signatures, including a transition between the Cretaceous passive margin and the Paleocene foreland basin, the initial uplifting of the Eastern Cordillera with the isolation the Llanos Basin and Táchira Saddle from the Central Cordillera and the Magdalena Valley in the Early Oligocene, and the uplifting of the Mérida Andes by the Early Miocene. The outcomes of this study emphasize the importance of the Mérida Andes and Eastern Cordillera Uplift in controlling the evolution of the sediment dispersal patterns in northern South America and represent a contribution in the understanding of the paleogeographic evolution in the region.