GEOL2017HOWE26318 GEOL
Type: Graduate
Author(s):
Tyler Howe
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
View PresentationFluvio-lacustrine systems are prone to experiencing significant flood events separated by longer low energy periods. During low flow, sediment is stored upstream of the lake as mid-channel and side-attached bars. During high-discharge events, water level rises above the topographically low delta front levees, the turbulent jet of the river is positioned upstream of the levee terminus where levees are less confining, and the previously stored sediment is flushed from the channel into the lake basin laterally as sheets. This process forms a laterally extensive, well sorted wedge shaped deposit of fine grained sand called a blowout wing (after Tomanka, 2013). These wings are documented in the ancient within the Kayenta Formation, UT, where the sand wings demonstrated a significant increase in connectivity between statistically clustered fluvio-lacustrine channel belts. In this research, we document two examples of blowout wings forming in the modern. The first example is a lake sourced by a mud dominated river (Denton Creek, Lake Grapevine, TX), and the second is a lake sourced by a sandy, bedload dominated river (Red River, Lake Texoma, TX). Wings are composed of fine to medium grained, well sorted, and clean sand. The deposits are thin and laterally continuous, with measured thicknesses of 5-10 cm that thin away from channel axis. Wings have an aerial extent up several hundred meters, scaling to 4-6 times the channel width. The Red River at Lake Texoma has a channel width of 125m and deposits wings with an aerial extent of 250-350m long along the levee of the delta channel and 300-500m laterally. As the Red River has prograded into the basin, 5-6 individual blowout wings form a wing complex 1500m long and 500-600m laterally from the channel. Denton Creek at Lake Grapevine has a channel width of 25m and deposits wings on the order of 50-125m along the levee of the delta channel and 60-150m laterally. Three wings at Lake Grapevine form a wing complex 300m long and 100-150m laterally. The amalgamation and statistical clustering of fluvio-deltaic channel belts is increased by the presence of blowout wings, resulting in higher total reservoir size and connectivity. Blowout wings should be, and are, found in modern systems and subsequently the rock record recording fluvio-lacustrine environments of deposition.
GEOL2017MCGREGOR60725 GEOL
Type: Graduate
Author(s):
Graham McGregor
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
View PresentationThin sand sheets presumed to be terminal splay bodies have potential to serve as hydrocarbon reservoirs. The few studies of terminal splays managed from arid systems has provided insight, but ground study of the humid equivalent is lacking. Deposited in the distal zone of a distributary fluvial system (DFS), the splay bodies are formed as rivers terminate from loss of slope into unconfined dispersive flow and deposit bed load as splays and advect mud to more distal floodplains. The splay sheets and floodplain together provide potential for both reservoir and seal. We examined terminal splay deposits in a modern humid terminal splay system, Andean foreland of northern Argentina, and in ancient foreland deposits, Paleocene Raton Formation of the Colorado Raton Basin. I am going to compare the two locations in terms of grain-size, sedimentary structures, geometry, and scale and see how they relate. I hypothesize that the two are going to have similar grain sizes, and that the sedimentary structures and geometries will also be analogous but expect them to be scaled down in the Raton Basin.
The modern splay in Argentina is nearly 1.3 km wide and 1.9 km long and was deposited during a single large flood in 2012. Cross sections generated by hand augers show a maximum thickness of 0.8 m, an average of 0.5 m, and a consistently very fine-grained to lower medium-grained sand texture throughout. Total sand deposited in the flood event is ~ 1.2 million cubic meters (~2.0 million cubic meter maximum), and accumulates over earlier splay deposits separated by weakly developed soils that are locally removed by splay incision. Subsequent dissection of the splay permits examination of sedimentary structures, which are dominantly climbing ripples, planar laminations, and cross sets, but climbing antidunes are locally found near the splay apex. Ancient terminal splays of the Raton Formation are made of thinner sand sheets (~0.25 m) and tend to have thicker muddy floodplain deposits between. Grain-size distribution, sheet geometry, and sedimentary structures however are consistent between the modern and ancient examples. Both the Argentina and Raton examples reflect the distal end of a humid Distributive Fluvial System, however, the Raton system appears to have been of smaller scale. This is consistent with the comparatively smaller scale of the Raton vs. Andean tectonic system.
GEOL2017MCGUIRE35162 GEOL
Type: Graduate
Author(s):
Preston McGuire
Geological Sciences
Advisor(s):
Xaingyang Xie
Geological Sciences
View PresentationThe Late Paleozoic Ouachita fold-and-thrust belt extends from the southern terminus of the Appalachian thrust belt in eastern Mississippi up through central Arkansas, southeastern Oklahoma, and Texas terminating in northeastern Mexico. A series of Carboniferous foreland basins were formed sequentially to the thrust front. The interaction between the Laurentian craton and the Appalachian-Ouachita orogenic belts controlled sedimentation in the southern midcontinent region throughout the Paleozoic. In contrast to the Appalachian orogenic belt to the east, the Ouachita orogenic belt and associated sediments remain poorly documented and less constrained.
In this study, seven Ordovician to Mississippian aged clastic units from the Ouachita Mountain in central Arkansas were sampled and tested using U-Pb detrital zircon geochronology. Three major age peaks are prominent, including the Grenville Province (~0.95-1.2 Ga), the Granite-Rhyolite Province (~1.3-1.5 Ga), and the Superior Province (>~2.5 Ga) in Ordovician to Silurian aged rocks. A change in this signature becomes clear at the beginning of the Carboniferous from Early Mississippian Stanley Group samples showing the additional Paleozoic age peak (~490-520 Ma) potentially derived from the Appalachian orogenic belt to the east, and/or from peri-Gondwanan terranes accreted to Laurentia just before the collision with Gondwana. This stratigraphic variation of detrital zircon age signature suggests that the transition from a passive to an active margin in the Ouachita trough started, at the latest, in early Mississippian times. Results of this study is the first systematic study of the U-Pb detrital zircon signature of the Ouachita orogenic belt and have important implications in sediment dispersal, provenance interpretations, and paleogeography reconstructions in North America, especially in the southern mid-continent and surrounding areas.
GEOL2017WILLIAMS23742 GEOL
Type: Graduate
Author(s):
John Williams
Geological Sciences
Advisor(s):
Helge Alsleben
Geological Sciences
View PresentationThe Eagle Ford Shale in south Texas is one of the most prolific unconventional hydrocarbon plays in the world (Breyer, 2016). In 2015, natural gas and oil from this field hit peak production numbers at 5,539 MMcf (million cubic feet) and 1,118,648 Bbl (barrels) per day, respectively (Texas RRC, 2016). In order for this low-permeability formation to produce, companies are using hydraulic fracturing, a stimulation treatment used in low-permeability rock whereby fluids are pumped at high pressures into reservoirs, causing new fractures to form and possibly reactivating existing fractures (Schlumberger, 2016). The aim of this study is to identify any geomechanical and geochemical properties that optimize fracture connectivity within the Boquillas Formation, the West Texas Eagle Ford equivalent. Energy-dispersive x-ray fluorescence (ED-XRF) and strength/hardness data from this study suggests that fracture frequency and length are affected by the clay and calcium carbonate content, and, by inference, the strength of the rock.
MATH2017HELLERMAN41492 MATH
Type: Graduate
Author(s):
Nathanael Hellerman
Mathematics
Advisor(s):
Efton Park
Mathematics
View PresentationThe winding number of a continuous function on the unit circle counts how many times a graph of the function loops around the origin. It is homotopy invariant and has applications to several areas of Mathematics.
Toeplitz operators with continuous symbol are bounded linear operators on the Hardy Space involving multiplication by a continuous function. The index of such a Toeplitz operator is closely connected to the winding number of its symbol.
This connection is examined and then extended for Toeplitz operators with crossed product symbols.
MATH2017SMITH36813 MATH
Type: Graduate
Author(s):
Jeremy Smith
Mathematics
Advisor(s):
George Gilbert
Mathematics
View PresentationAn algebraic integer is a complex number that is a root of a monic polynomial with integer coefficients. It is well-known that there is not always a single algebraic integer that can generate the ring of algebraic integers contained in a field extension of the rational numbers. The index of an algebraic integer is a natural number that measures how far a ring of integers is from having such a "primitive element." We investigate these indices in cubic fields and determine which natural numbers occur as indices in given families.
PHYS2017CIAMPA7324 PHYS
Type: Graduate
Author(s):
Drew Ciampa
Physics & Astronomy
Advisor(s):
Kat Barger
Physics & Astronomy
View PresentationLocated inside the Large Magellanic Cloud, fierce explosions called supernovae have thrown out massive amounts of gas in every direction. A portion of this gas is aimed toward the Milky Way and is on a crash course with our galaxy. We are observing this gas with the Wisconsin H-Alpha Mapper, which provides a window into how the gas is distributed. These observations show two periods of supernovae explosions that created two distinct gas winds. One of these winds is currently active while the other was produced roughly 300 Million years old. Studying these gas clouds will provide information on how massive these winds are and the rate at which they are produced. The ejected gas is headed toward the Milky Way could supply our galaxy with additional gas to form stars in the future.
PHYS2017HASAN32286 PHYS
Type: Graduate
Author(s):
Md Tanvir Hasan
Physics & Astronomy
Roberto Gonzalez-Rodriguez
Chemistry & Biochemistry
Anton Naumov
Physics & Astronomy
Conor Ryan
Physics & Astronomy
Brian Senger
Physics & Astronomy
Advisor(s):
Anton Naumov
Physics & Astronomy
(Presentation is private)Graphene oxide (GO) inherits high transparency, substantial conductivity, high tensile strength from its parent materials graphene. Apart from these properties, it emits fluorescence which makes it a potential material to use in optoelectronics and bio-sensing applications. In this work, we have utilized systematic ozone treatment to alter the optical band gap of single-layered graphene oxide in aqueous suspensions. Due to controlled ozonation, additional functionalization takes place in GO graphitic sheet which changes GO electronic structure. This is confirmed by the increase in vibrational transitions of a number of oxygen-containing functional groups with treatment and the appearance of the prominent carboxylic group feature at c.a. 1700 1/cm. Albeit, timed ozone induction introduces only slight change in color and absorption spectra of GO samples, the emission spectra show a gradual increase in intensity with a significant blue shift up to 100 nm from deep red to green. This large blue shift suggests an increase in optical band gap with additional functionalization introduced by ozone treatment. We utilize a semi-empirical theoretical approach to describe the effects of functionalization-induced changes. This model attributes the origins of fluorescence emission to the quantum confined sp² carbon islands in GO encircled by the functional groups. As we decrease the graphitic carbon cluster size on the GO sheet, the optical bandgap calculated via HyperChem molecular modeling increases, which supports the experimentally observed blue shifts in emission. This theoretical result is further supported by the TEM measurement of ozone-treated samples, which shows a decreasing trend of average ordered graphitic carbon cluster size on GO sheets with treatment time. Theoretical modeling, as well as the experimental results, indicate that the optical bandgap and emission intensity of GO are alterable with controlled ozone treatment, which allows tailoring the optical properties of GO for specific applications in optoelectronics and bio-sensing.
PHYS2017MELENDEZ16706 PHYS
Type: Graduate
Author(s):
Matthew Melendez
Physics & Astronomy
John Donor
Physics & Astronomy
Peter Frinchaboy
Physics & Astronomy
Julia O'Connell
Physics & Astronomy
Advisor(s):
Peter Frinchaboy
Physics & Astronomy
View PresentationThe Open Cluster Chemical Abundances and Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1 m Otto Struve telescope and Sandiford Echelle Spectrograph.
PHYS2017RAY20657 PHYS
Type: Graduate
Author(s):
Amy Ray
Physics & Astronomy
Angelle Tanner
Physics & Astronomy
Advisor(s):
Peter Frinchaboy
Physics & Astronomy
View PresentationThe goal of this study was to conduct a survey of 913 M-dwarf stars from the Lepine and Shara Proper Motion(LSPM) catalog within 33 parsecs. This research was conducted to improve upon the statistics of nearby multiple M-dwarf star systems. Identifying and confirming multiple systems at both wide and small separations will expand understanding of M-dwarf formation by comparing these results to existing star formation models. Data for these targets was collected with the Robo-AO camera on the Palomar 60in telescope. Separation and position angles were determined and compared for two epochs of the images containing multiple stars, one taken in 2012 and the other taken in 2014, to look for changes in these values. Stars with little change in position with respect to one another suggest they are common proper motion pairs. The Washington Double Star(WDS) catalog and other resources were used to further determine binarity. There were 50 multiple star system candidates found with a multiplicity fraction of 28.6±3.0 and a companion star fraction of 34.7±2.1.