GEOL2024KELSEY36990 GEOL
Type: Undergraduate
Author(s):
Wilson Kelsey
Environmental Sciences
Nicole Kiczek
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: First Floor, Table 6, Position 1, 11:30-1:30
(Presentation is private)Surface water plays a critical role in meeting Texas’s water demands, particularly for municipal use. In the State of Texas, there are 188 major water reservoirs, 15 major river basins, and 8 coastal basins. These water sources serve as the lifeline of Texas’ urban and agricultural populations. In our study, we will be examining how proximity to these sources affects development, particularly focusing on population density to determine the type of population (urban or agricultural). Our findings have the potential to provide insights that can inform city water departments near major water resources with high population density and aid with water demand and scarcity management.
GEOL2024MOLLENDOR23331 GEOL
Type: Undergraduate
Author(s):
Kenna Mollendor
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Third Floor, Table 2, Position 2, 11:30-1:30
(Presentation is private)This study investigates the intricate relationship between population growth and energy demand, aiming to identify trends and patterns that inform future energy planning. Through comprehensive analysis, utilizing data spanning geographical regions of the US and the period 2000-2021, the study assesses the impact of population growth on energy consumption. Data from the US Energy Information Administration will be utilized for electricity and energy data, while data from the US Census will be used for population data. The analysis will focus on examining how population changes affect energy demand, and conversely, how changes in energy demand influence the sources from which energy is produced. This analysis aims to provide insights into predicting future energy usage, production sources, and demand patterns as the population continues to grow. The findings underscore the pressing need for sustainable energy solutions as the population continues to increase, providing valuable insights for policymakers and stakeholders to navigate the complexities of energy planning and management.
GEOL2024MORENO23922 GEOL
Type: Undergraduate
Author(s):
Isabella Moreno
Environmental Sciences
Tabby Pyle
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Second Floor, Table 7, Position 2, 1:45-3:45
View PresentationGlobal climate change, due to increases in greenhouse gas emissions, is a prevailing issue that is projected to continue with heightened impacts on extreme weather events, desertification, and human health. Our project draws connections between resilience to climate change and the molecular composition of organic molecules found in soil.
Through assessments of the carbon (C), hydrogen (H), and oxygen (O) content and composition of organic molecules in soils can be determined. Specifically, through assessments of C-number (Cn), H/C and O/C ratios of organic molecules, we can determine how well different soils and soil types can sequester carbon and ultimately support climate resiliency. Higher Cn in organic molecules indicate more carbon storage capacity while lower O/C and H/C ratios in organic molecules indicate more stable carbon that is resistant to release as CO2 to the atmosphere. Our research will compare Cn, O/C and H/C data of organic molecules in soils from across the United States to identify possible trends in carbon sequestration potential across regions of the conterminous US.
The data to be used is raw Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) data from the “One thousand soils for molecular understanding of belowground carbon cycling” project (Bowman et al.). We first plotted the soil samples on Van Krevelen diagrams, which visualize each molecule as a point with O.C and H.C ratios, and we made frequency distributions to understand the largest organic molecular formula for each sample. We then plotted the maximum organic formula from each soil onto a new Van Krevelen diagram, where we compared the different samples to see which ones had higher overall carbon content. We hope to find a connection between soil composition and U.S. regions from which we will then make predictions on potential for carbon sequestration and, ultimately, the ability of these regions to remain resilient and sequester carbon during climate change.
GEOL2024NINO45108 GEOL
Type: Undergraduate
Author(s):
Isabella Nino
Geological Sciences
Richard Hanson
Geological Sciences
Advisor(s):
Richard Hanson
Geological Sciences
Location: Basement, Table 2, Position 3, 11:30-1:30
View PresentationThe regional geological framework of the area I am studying involves a possible major northwest-trending Cambrian to Ordovician rift zone with abundant igneous rocks in parts of Colorado. These igneous rocks may be related to large volumes of Cambrian igneous rocks located along the same trend in southern Oklahoma. My project focuses on plutonic igneous intrusions located in the Wet Mountains in the southern part of the Front Range and in the Powderhorn District farther west. The goal of this project is to discover whether the rocks in Colorado formed during the same major magmatic event as those in Oklahoma. I will be studying thin sections of rock samples from Colorado utilizing a petrographic microscope. I will describe and identify the main igneous minerals from the samples, some of which are rare. I will also study the igneous textures and alteration products in the samples. Geochemical studies in progress will build on these results and will allow detailed comparison with the southern Oklahoma igneous rocks.
GEOL2024PERKEY24301 GEOL
Type: Undergraduate
Author(s):
Caleb Perkey
Geological Sciences
Richard Hanson
Geological Sciences
Advisor(s):
Richard Hanson
Geological Sciences
Location: Second Floor, Table 9, Position 2, 11:30-1:30
View PresentationA major Cambrian rift zone containing abundant igneous rocks is present in southern Oklahoma and trends northwest from the ancient continental margin. Previous geologists have mapped numerous igneous intrusions in Colorado that follow the same trend, ranging from Cambrian to Ordovician in age, and have speculated that these intrusions may be a part of the same rift. These intrusions include abundant igneous dikes of various compositions that originated from deeper magmatic bodies, filling fracture systems in older igneous rocks and Precambrian gneisses. This study involves the microscopic analysis of samples we collected from different dike types, including diabase, trachyte, and lamprophyre. Diabase is a common intrusive basaltic rock that develops coarser grains due to slower cooling and represents partial melt from the mantle that fills fractures in the upper crust. For our samples, trachyte refers to igneous dikes containing large crystals of K-feldspar within a distinctive red-colored, fine-grained matrix. Magmas of this composition are typically associated with intraplate rift zones. Lamprophyre is a rare intrusive igneous rock that has large crystals of biotite and amphibole in a finer matrix of feldspar and mafic minerals. While rare, this rock is also associated with intraplate rift zones. We also sampled one significantly younger basalt dike that intrudes Cenozoic volcanic rock to compare with the much older diabase dike samples.
Nine of our samples come from the Wet Mountains in the southern part of the Front Range in Colorado, and we also have an additional five samples of diabase dikes along the Front Range ~100 km to the north. Analysis of thin sections of these samples under the petrographic microscope will provide insight into their exact mineralogical compositions as well as their igneous textures. This work will provide a framework for geochemical analyses of the dikes, which is currently underway. The results will help determine whether the Colorado intrusions are directly related to the southern Oklahoma rift.
GEOL2024SOLOMON32914 GEOL
Type: Undergraduate
Author(s):
Emma Solomon
Environmental Sciences
Daphne Varmah
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Second Floor, Table 8, Position 2, 11:30-1:30
View PresentationSwitchgrass generates cellulosic ethanol, classified as an alternative fuel by federal definition. For switchgrass and other vegetation to become biofuel we have to look specifically at the cellulose microfibril and extract the glucose. This extraction leads to the fuel being produced. Switchgrass can deposit organic matter deep within the soil profile as the roots expand into the subsoil for nutrients and water. Not only is switchgrass a good biofuel product, but the carbon sequestration that comes along with planting this grass is highly beneficial. Due to the roots reaching deep into the soil, switchgrass is low maintenance while adding nutrients.
In this project, we will be researching possible farms in Saskatchewan, Canada preferably in close proximity to ethanol biorefinery plants for maximum switchgrass plantation, in order to seek possible expansion of biofuel production in Saskatchewan. We will be looking at farms, proximity of farms to biorefineries, and soil make up.
GEOL2024VARMAH201 GEOL
Type: Undergraduate
Author(s):
Daphne Varmah
Geological Sciences
Emma Solomon
Geological Sciences
Advisor(s):
Essayas Gebremichael
Geological Sciences
Location: Basement, Table 8, Position 1, 1:45-3:45
(Presentation is private)Switchgrass generates cellulosic ethanol, classified as an alternative fuel by federal definition. For switchgrass and other vegetation to become biofuel we have to look specifically at the cellulose microfibril and extract the glucose. This extraction leads to the fuel being produced. Switchgrass can deposit organic matter deep within the soil profile as the roots expand into the subsoil for nutrients and water. Not only is switchgrass a good biofuel product, but the carbon sequestration that comes along with planting this grass is highly beneficial. Due to the roots reaching deep into the soil, switchgrass is low maintenance while adding nutrients. In this project, we will be researching possible farms in Saskatchewan, Canada preferably in close proximity to ethanol biorefinery plants for maximum switchgrass plantation, in order to seek possible expansion of biofuel production in Saskatchewan. We will be looking at farms, proximity of farms to biorefineries, and soil make up.
GEOL2024WALLACE18162 GEOL
Type: Undergraduate
Author(s):
Justyn Wallace
Environmental Sciences
Kaitlyn Webb
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 10, Position 1, 1:45-3:45
View PresentationUrbanization is an ever-growing problem that has led to habitat loss, habitat degradation, the spread of diseases, and so much more. Wildlife are slowly being pushed out of their historic home ranges, increasing human-wildlife conflicts. As a result, there has been a push to restore lost habitat and mitigate habitat destruction. However, this can be made tricky when managers are unaware of what makes a habitat suitable. Thus, there is an immediate need to determine ways of identifying environments favored by many species and implement conservation plans. Conducting present/absence surveys on animals and placing the sightings on a map is one way of determining where a species can be found. The purpose of this research will be to study the effects of urbanization on raccoons within parks in the Fort Worth area. Parks are valuable habitats for organisms in an urban environment as these parks have resources not found in highly human-disturbed areas such as neighborhoods or shopping districts. We will be comparing the raccoon sightings from iNatrualist, a citizen science platform, to different parks in the surrounding area to determine habitat suitability. We used GIS data from iNatrualist to compare raccoon sightings to habitat type. Habitat was divided into four categories: concrete, open field, water, and field with trees. Pictures of the study site were used to train Mulrispec, a multispectral image data analysis system, to identify areas that meet the habitat types. The distribution data was overlaid on top of the new map. Raccoon sightings were compared to habitat types to determine habitat preference. By identifying suitable habitats, we hope to learn how raccoons and other urban organisms are adapting to rising urbanization.
GEOL2024WHITLEY28573 GEOL
Type: Undergraduate
Author(s):
Amanda Whitley
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: First Floor, Table 1, Position 2, 11:30-1:30
View PresentationThis project uses GIS to take a look at multiple layers of spatial data to identify possible relationships between COVID-19 and a variety of social and economic factors impacting social vulnerability in Tarrant County, Texas in the year 2020. The purpose of this research is to better understand trends of widespread public health events and factors that may contribute their severity. A variety of techniques are used to map COVID-19 rates for each city and to visualize differences in social vulnerability across the county. Furthermore, GIS is used to analyze social vulnerability and access to hospitals in order to identify areas underserved by medical care. From there, recommendations for new hospital locations are established.
GEOL2024WHITLEY29828 GEOL
Type: Undergraduate
Author(s):
Amanda Whitley
Geological Sciences
Sarah Foxx
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Third Floor, Table 4, Position 2, 1:45-3:45
View PresentationFor this project, we used GIS remote sensing technology to locate and identify potential locations for urban farming. The purpose of this project is to recognize and assist in the issue of food deserts in areas such as the DFW (Dallas Fort Worth) metroplex. A food desert refers to any area with limited or no access to affordable, nutritious food. This may include a lack of access to farmers’ markets, vegetable shops, or fresh produce. This project aims to recognize and assist in the issue of food deserts in urban areas with a particular focus on the East Fort Worth/Arlington area of Tarrant County. Several relevant datasets including high spatial resolution commercial remote sensing and other relevant spatial (such as property appraisal datasets, land temperature data) and non-spatial datasets. These will be combined in a GIS environment to identify empty plots of land that could be used for the purposes of urban agriculture while assessing their potential for food growth. Once these plots of land are identified, we will use ArcGIS to assess ecosystem services provided by these urban farms, such as the impact on climate and urban heat.