ENGR2023RAJNARAYANAN64173 ENGR
Type: Undergraduate
Author(s):
Samyuktaa Rajnarayanan
Engineering
Harmann Singh Chhabra
Engineering
Advisor(s):
Stephen Weis
Engineering
Location: Second Floor, Table 1, Position 1, 1:45-3:45
View PresentationA Faraday cage is an enclosure that shields electromagnetic fields from entering or exiting the cage. While metals with high electrical conductivity are expected to effectively demonstrate the operation of a Faraday cage, preliminary observations of a sealed cast iron cylinder allowing the transmission of Bluetooth signals between a smartphone and wireless earbuds across it suggested the need for further research into electromagnetic wave propagation through closed metal systems. This research utilized Bluetooth connectivity tests through sealed metal cylinders made of cast iron, aluminum, and stainless steel to analyze the working of Faraday cages, explore related material properties, and isolate possible reasons for the conflict in expected behavior when electromagnetic transmission is detected through such cages. The research methods included conducting Bluetooth connectivity tests with different cylinder orientations and analyzing the strength of the transmitted and received Bluetooth signal. The key findings of this study suggest that material properties, spatial orientation, and the strength of the electromagnetic source influence the transmission of electromagnetic waves through sealed metal cylinders. The implications of these findings suggest potential exceptions to a common electromagnetic phenomenon and provide insights for future research.
ENGR2023SANTILLAN57704 ENGR
Type: Undergraduate
Author(s):
Rigoberto Santillan
Engineering
Natalie Arguello
Engineering
Daniel Lopez
Engineering
Edgard Rodriguez
Engineering
Lysa Sugira
Engineering
Advisor(s):
Sue Gong
Engineering
Location: Third Floor, Table 10, Position 1, 1:45-3:45
View PresentationTexas Instruments is developing a new micro-optical-electro-mechanical device called phase light modulator (PLM). The TCU senior design team developed a robust testing system that can expose 20 PLM devices to different light sources with the capability of monitoring the temperature and light intensity at each device location. The system design and construction of the testing system will be presented. In addition, the selection and operation of LEDs, temperature and light sensors, as well as the optical components that are needed for the light source and sensors will be discussed.
ENSC2023BONECK8740 GEOL
Type: Undergraduate
Author(s):
Megan Boneck
Environmental Sciences
Audrey Haffner
Environmental Sciences
Gisela Pacheco
Environmental Sciences
Zoey Suasnovar
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 8, Position 2, 1:45-3:45
View PresentationThis research assesses the relationship between income per capita and the amount of maintenance received for the major roads across the State of Texas. Relevant datasets and analysis techniques such as demographic (census data), population density (distribution), road network, maintenance records, etc. will be carried out using ArcGIS Pro software. A series of maps highlighting analysis results derived based on the various parameters will be produced to provide a comprehensive overview of the relationship between the variables, if any, that would be useful for future decision-making.
ENSC2023BUCKMEIER40936 ENSC
Type: Undergraduate
Author(s):
Adam Buckmeier
Environmental Sciences
Manuel de Oyarzabal Barba
Environmental Sciences
Peter Fahey
Environmental Sciences
Advisor(s):
Brendan Lavy
Environmental Sciences
Location: First Floor, Table 4, Position 1, 11:30-1:30
View PresentationTrees provide an array of benefits to urban communities, such as oxygen production, flood mitigation, air pollution reduction, increased property value, cooling effects, and cultural services. Tree distribution, however, varies across cities, impacting the delivery of these services from neighborhood to neighborhood. Research has shown that low-income neighborhoods are more likely to have less trees than wealthier neighborhoods, leaving these neighborhoods more vulnerable to health impacts, such as heat-related and respiratory illnesses. The purpose of this study is to analyze tree canopy cover in relation to a set of demographic variables at the US Census block group level to understand if inequities exist in Fort Worth, Texas. We used a geographic information system (GIS) to assess the extent to which age, race, income, and housing characteristics are related to tree canopy. We conducted a correlation analysis between percent canopy cover and the demographic variables. Preliminary results suggest that majority minority and low-income block groups possess less canopy cover than predominantly white, higher-income areas in Fort Worth.
ENSC2023KING7948 ENSC
Type: Undergraduate
Author(s):
Trip King
Environmental Sciences
Tabby Pyle
Geological Sciences
Advisor(s):
Esayas Gebremichael
Environmental Sciences
Location: Basement, Table 10, Position 2, 11:30-1:30
View PresentationThe present study is aimed at comparing the annual income per household to amenities in districts within the Dallas Fort Worth metroplex. Several datasets and analysis results including the spatial distribution of public and private schools, school ratings, proximity to health facilities, parks, and other government provided services will be combined to investigate the research question. Some of the data analysis techniques that will be implemented using ArcGIS Pro include creating buffer zones which act as visual guides to better demonstrate comparisons and communicate the findings in an interactive way.
ENSC2023KLOSAK55562 ENSC
Type: Undergraduate
Author(s):
Kaleigh Klosak
Environmental Sciences
Ashlyn Morrill
Environmental Sciences
Camilla Price
Biology
Olivia Sottile
Biology
Advisor(s):
Brendan Lavy
Environmental Sciences
Location: Third Floor, Table 8, Position 2, 1:45-3:45
View PresentationEach year, as much as 40 percent of food produced in the United States is wasted by producers or consumers. When food waste is sent to landfills, it competes for limited space and generates the greenhouse gas methane. Globally, food loss and waste represent 8 percent of anthropogenic greenhouse gas emissions. Restaurants are known to be a contributor to food waste, both in the kitchen and from consumers. The purpose of this research is to examine food recovery efforts of restaurants in Fort Worth. We sent a survey to 371 restaurants in Fort Worth asking about their food waste management practices. The survey was designed to document restaurants’ current food waste practices, interest in food donation and composting programs, and business characteristics. We analyzed the responses through descriptive statistics and other statistical methods to evaluate how practices varied by business demographics and type of establishment. From this survey, we discovered local barriers to food recovery and from these, we suggest forms of outreach or programming that would help restaurants to reduce food waste. We also used responses to identify and map ideal food waste drop-off locations for restaurants that the city could use to plan recovery efforts.
ENSC2023MOLLENDOR55171 ENSC
Type: Undergraduate
Author(s):
Kenna Mollendor
Environmental Sciences
Advisor(s):
Brendan Lavy
Environmental Sciences
Location: First Floor, Table 4, Position 1, 1:45-3:45
View PresentationUrban forests are a common way to integrate nature into heavily populated areas. Urban forests provide a range of benefits to urban communities. Trees provide economic, social, and cultural benefits. For instance, trees provide opportunities for individuals to engage with the environment, reduce stress, and increase property values. Trees also contribute to ecosystem services as well by filtering air pollution, providing habitat for wildlife, and mitigating storm water runoff. The purpose of this research is to assess the biodiversity and the climate resiliency of trees in an urban forest in Arlington, Texas that was part of a program for environmental mitigation of a flood plain. To assess the biodiversity and climate resiliency of the area’s trees, we collected the following data: tree diameter measured at 4.5 feet above the ground (DBH), GPS coordinates of trees, species, and tree condition. We analyzed the data using the Simpson’s Biodiversity Index and the Shannon Diversity Index values to assess the biodiversity of present tree species and identify their climate resiliency. We compared these results to two Representative Concentration Pathways (RCPs) to understand the potential impact of climate change on the urban forest. Finally, we offer suggestions to increase the resiliency of this urban forest and the potential for incorporating these findings in future urban forest management plans.
ENSC2023MORENO24736 ENSC
Type: Undergraduate
Author(s):
Isabella Moreno
Environmental Sciences
Advisor(s):
Gehendra Kharel
Environmental Sciences
Location: Third Floor, Table 2, Position 1, 1:45-3:45
View PresentationAt the Water and Society Lab at TCU, we are studying the presence of Escherichia coli (E. coli). The Village Creek tributary of the Trinity River is the subject of this testing, and it is one of the many water bodies monitored by the US Geological Service. Using information provided by the monitoring location alongside the data gathered from our research, we can assess and monitor the concentration of E. coli in the Village Creek.
Through weekly sample collection and analysis, we can determine the prevalence of E. coli in the Village Creek. Our method is to collect water samples, add EPA-approved Colilert testing chemicals, and incubate the samples at 35℃ for 24 hours. During analysis, the presence of E. coli is quantified by colony forming units (CFU). This research indicates whether or not the sample contains unsafe levels of E. coli. According to the Texas Commission on Environmental Quality and the US EPA, 126 CFU per 100 mL of water is deemed unsafe. In addition to recording CFU, we also document certain hydro-climatological variables such as ambient and water temperature, rainfall, and turbidity. Through these findings, we can be applied to water management and quality decisions throughout the Dallas-Fort Worth and north-central Texas regions.
ENSC2023ROUSSEL53636 ENSC
Type: Undergraduate
Author(s):
Kaitlyn Roussel
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 10, Position 1, 1:45-3:45
View PresentationWildfires are a global concern as they are unpredicted fires that cause harm to their surrounding environment, local wildlife, and humans. The negatives of these wildfires outweigh the positives as their occurrence is natural but also caused by human negligence. This past year there were about 69,000 wildfires reported nationally; of these fires, 835 were from Colorado. This study assesses the risk of wildfires in Colorado by using GIS and spatial data to map fire risk and determine possible mitigation techniques through utilizing livestock.
For the past 20 years, Colorado has experienced their largest wildfires, and with no decrease in the number of wildfires each year, mitigation techniques are crucial. In determining what method to use, it is valuable to focus on all the factors that add to these fires, such as the amount of rainfall, elevation, humidity, human activities, and more. Multiple past studies have used livestock as a form of wildfire mitigation. Using grazers to eat the fuel these fires thrive on can decrease the spread of future fires. Grazers are an environmentally stable form of fire mitigation as they eat the vegetation and then process it to become nutrients for the soil. We can determine the areas of high risk in Colorado by assessing how the stated factors contribute to Colorado wildfires and see if grazers are a possible mitigation method.
GEOL2023DEMAIO20707 GEOL
Type: Undergraduate
Author(s):
Nicholas DeMaio
Geological Sciences
Esayas Gebremichael
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 2, Position 1, 11:30-1:30
View PresentationThe objective of this research is to conduct wind farm suitability analysis (for energy generation) with a focus on areas that either heavily rely non-renewable sources of energy (parts of Australia) or areas that have limited access to energy. The study will combine several spatial datasets (road networks, population distribution, high mean windspeed, etc.) and analysis products (proximity to roads, national grids, etc.) to determine, through the suitability analysis, whether the wind energy is ideal and economical source of energy for the investigated areas.