Filter and Sort







BIOL2022PERRY1502 BIOL

Effect of Season, Body Size, and Sex on the Mercury Concentrations of Orb-Weaving Spiders

Type: Undergraduate
Author(s): Cale Perry Biology Olivia Eberwein Biology Garrett Helburn Biology
Advisor(s): Matthew Chumchal Biology
Location: Third Floor, Table 6, Position 2, 11:30-1:30

Effect of Season, Body Size, and Sex on the Mercury Concentrations of Orb-Weaving Spiders
Cale Perry, Garrett Helburn, Olivia Eberwein, Madeline Hannappel, Matthew Chumchal, and Ray Drenner
Mercury (Hg) is an anthropogenic contaminants found in all aquatic ecosystems across the world. One of the methods to monitor levels of Hg contamination in an ecosystem is using sentinel organisms: abundant and widely distributed organisms within the food web that accumulate contaminants in body tissues without negative effects. Riparian spiders are a potential sentinel organism for the study of Hg contamination in aquatic ecosystems, as they accumulate mercury through the consumption of contaminated emergent aquatic insects. The present study will examine the effects of spider body size, sex, and season on 2 taxa of orb-weaving spiders [Family Araneidae: Larinioides sp., Metazygia sp.]. 575 orb-weaving spiders were collected from a boat dock on the South side of Eagle Mountain Lake, Texas, USA, from May to September 2019. The spiders were preserved in 95% ethanol and sorted based genera, month collected, sex, and size class. Size class was determined by measuring the spiders front left leg length (tibia + patella) and served as an indicator of body size. Mercury contamination will be analyzed through direct Hg analysis.

View Presentation

BIOL2022RUTLEDGE25520 BIOL

Pollen Source and Abundance Effects on Fitness of a Carnivorous Plant

Type: Undergraduate
Author(s): John Rutledge Biology
Advisor(s): John Horner Biology
Location: Basement, Table 5, Position 1, 1:45-3:45

Plants with threatened habitats and fragmented populations may require repatriation efforts to maintain healthy populations. Populations of Sarracenia alata, the pale pitcher plant, are severely fragmented, and the species is near threatened. A complete understanding of its reproduction will be crucial in establishing and maintaining healthy populations. The goals of this study were to determine if 1) S. alata is capable of selfing (reproducing with pollen from the same individual); 2) S. alata is capable of autogamy (selfing without intervention); and 3) pollen load affects reproductive success. We used seed set to measure individual fitness. Thus, it was necessary to determine a reliable method of counting seeds. Two methods were examined, and these gave statistically similar results. We found that while S. alata is capable of selfing, it is not autogamous. Seed set was significantly higher in outcrossed individuals than in selfed individuals . In 2019, plants receiving supplemental pollen yielded more seeds than those in either the control group or a group in which pollinator access was restricted. During 2021 (a year with higher pollinator activity), there was no significant difference between the number of seeds produced by control plants and those receiving supplemental pollen. This study demonstrates the important role of pollinators in maintaining healthy populations in this system.

View Presentation

BIOL2022SACHDEVA19088 BIOL

There and back again: Using whole genome sequencing to identify the genes associated with migration patterns in rainbow trout

Type: Undergraduate
Author(s): Shriya Sachdeva Biology
Advisor(s): Matt Hale Biology Giridhar Akkaraju Biology Mikaela Stewart Biology Keith Whitworth Biology
Location: Basement, Table 2, Position 2, 11:30-1:30

Migration, which is defined as the seasonal movement for survival or reproductive advantage such as access to resources, is a behavioral phenomenon exhibited by many species including the salmonid Oncorhynchus mykiss. More commonly known as rainbow trout, O. mykiss exists in two life histories: migrants (steelhead trout), and residents (rainbow trout). While there are many factors that contribute to this variation in migration behavior, one of the reasons is their genetic makeup since there is an apparent correlation between the migratory behavior of parents and their offspring. The primary objective of this research project is to identify single nucleotide polymorphisms (SNPs), or genetic differences, which are associated with migratory behavior in rainbow trout. To that end, I used whole genome sequence data from five migrant and five resident rainbow trout. These data were aligned to the trout genome and used to locate genetic differences between the two migratory types. Quantitative PCR (DMAS-qPCR) approaches were used to validate the SNPs and genotype them in a larger set of twenty-five migratory steelhead. Research findings exhibited that Sashin Lake is producing smolts (young migratory steelhead) that are successfully returning to the lake and reproducing at the end of their life cycle. Additionally, while there was not a significant difference seen in terms of marine survival between the sexes, females were more likely to migrate compared to their male counterparts due to the reproductive advantage and greater access to resources that migration offers. This data will support future studies observing trout migratory behavior with larger sample sizes and from different generations and settings and will benefit conservation studies regarding population decline in migratory species.

View Presentation

BIOL2022SINDELAR15969 BIOL

Determining biochemical and biophysical methods to evaluate the interaction between BRCA1 and estrogen receptor alpha

Type: Undergraduate
Author(s): Molly Sindelar Biology Mikaela Stewart Biology
Advisor(s): Mikaela Stewart Biology
Location: Basement, Table 7, Position 2, 11:30-1:30

BRCA1 is a gene whose protein (also named BRCA1) is found throughout all human cells and engages in DNA repair, cell cycle regulation, gene transcription regulation, and apoptosis. However, mutations in BRCA1 typically confer a higher risk of cancer in estrogen-responsive tissues, including breast epithelial tissue. This increase in incidence of tissue-specific cancers is thought to be in part due to the role of BRCA1 in the estrogen response pathway and interaction with the estrogen receptor alpha (ERα). Previous studies identified possible regions of each protein involved in the binding interface between BRCA1 and ERα. Using these regions (amino acids 177-240 in BRCA1 and the ligand binding domain of ERα) as our constructs, our studies further analyzed the molecular details of this direct interaction and determined methods conducive to studying the BRCA1-ERα interaction. A pull down assay qualitatively confirmed binding between the constructs of BRCA1 and ERα. Data collected from NMR spectroscopy reaffirmed the direct interaction between BRCA1 and ERα first seen in the pull down assay and provided evidence demonstrating that the presence of estrogen in the samples increased binding affinity. Finally, fluorescence spectroscopy of quenching experiments confirmed the previous two results – that a direct interaction between the constructs of BRCA1 and ERα used occurs and the binding affinity increases in the presence of estrogen – and allowed us to describe the binding curve of the system being studied. The molecular details confirmed here provide further avenues of study, such as documenting variants of unknown significance or studying the role estrogen plays in the function of the BRCA1-ERα complex, which could lead to novel findings that expand our understanding of the role either protein plays in cancer development.

View Presentation

BIOL2022VO2122 BIOL

Antioxidant Therapy: A Potential Treatment for Alzheimer’s Disease & Chronic Inflammation

Type: Undergraduate
Author(s): Margaret Vo Biology Gary Boehm Psychology Paige Braden-Kuhle Psychology Evan Chandlee Psychology Michael Chumley Biology Kayla Green Chemistry & Biochemistry Chelsy Mani Biology Shelby Kay Miller Psychology Caroline O'Connor Biology
Advisor(s): Michael Chumley Biology
Location: Second Floor, Table 1, Position 2, 11:30-1:30

Alzheimer’s disease (AD) affects about 6 million Americans, and hallmark pathologies of AD include amyloid beta (Aβ), inflammation, and oxidative stress. Microglial cells (MGCs) are brain cells that function like immune cells, and they respond to Aβ by secreting pro-inflammatory cytokines. Cytokines induce inflammation at sites of infection, and Aβ continually increases inflammation, resulting in neuronal death. Inflammation is also connected to oxidative stress, and prior research has demonstrated that Nrf2 (a transcription factor) protects cells from oxidative stress by increasing antioxidant enzymes. We will test potential benefits of molecules with antioxidant capabilities, created by Dr. Green (TCU Chemistry), on inflammation and Nrf2 expression in MGCs. Previously, we demonstrated that these compounds, L2 and L4, are powerful antioxidants that protect MGCs from oxidative stress. Currently, we aim to study the effects of L2 and L4 on inflammation, Nrf2 expression and heme oxygenase-1 (antioxidant) production following an inflammatory insult. We will pre-treat MGCs with different concentrations of L2 and L4, and then stimulate MGCs with lipopolysaccharide (LPS), a bacterial mimetic. Subsequently, we will measure pro-inflammatory cytokines, Nrf2 expression and antioxidant response genes. Overall, it is crucial for researchers to investigate effective therapeutics that could relieve AD symptoms, such as antioxidant treatment.

View Presentation

BIOL2022WIENCEK3133 BIOL

Identifying Alternative Marine Toxicity Testing Methods: Can Mysids and Fish Embryos Replace Larval Fish?

Type: Undergraduate
Author(s): Maddie Wiencek Biology Dalton Allen Biology
Advisor(s): Marlo Jeffries Biology
Location: Second Floor, Table 6, Position 2, 1:45-3:45

Testing of chemicals that enter our waterways is necessary to keep marine environments healthy. The current method of toxicity testing is the larval growth and survival (LGS) test, which exposes larval fish to varying concentrations of an effluent or chemical. Given recent legislation that calls for improvements in the welfare of animals used in toxicity testing, there is a need to identify alternatives to the LGS test. In light of this, the objective of the current study was to determine whether toxicity tests featuring fish embryos or shrimp could be used in place of LGS tests.

To accomplish this, we compared the results of the standard LGS test using inland silverside larvae with the results from two alternative tests, a mysid (e.g., shrimp) test and an inland silverside fish embryo toxicity (FET) test. The results of this study show that both the mysid and FET tests are promising alternative testing methods to the LGS test. The adoption of either test type will meet legislative goals and improve the welfare of fish used in toxicity testing.

View Presentation

BIOL2022WILLIAMS25832 BIOL

The Effect of Body Size on Mercury Concentration within Tissue of Araneids from the Trinity River

Type: Undergraduate
Author(s): Tyler Williams Biology Chris Allender Biology Morgan Capone Biology Garrett Helburn Biology Tori Martinez Biology Cale Perry Biology Robert Peterson Biology Iris Schmeder Biology Andrew Todd Biology Macyn Willingham Biology
Advisor(s): Matt Chumchal Biology
Location: Basement, Table 11, Position 2, 11:30-1:30

The Effect of Body Size on Mercury Concentration of Orb-Weaving Spiders (Araneidae) from the Clear Fork and West Fork of the Trinity River

Authors: Tyler Williams, Iris Schmeder, Morgan Capone, Matthew Chumchal, Andrew Todd, Ray Drenner, Cale Perry, Tori Martinez, Macyn Willingham, Robby Peterson, Chris Allender

Mercury (Hg) is a contaminant threatening all ecosystems. Inorganic Hg is released into the atmosphere from power plants and artisanal gold mines before being deposited over the landscape. Inorganic Hg deposited in the water can be converted by aquatic bacteria to methylmercury (MeHg). Methylmercury is one of the most toxic forms of Hg due to its capability of bioaccumulating within the tissues of organisms. Overexposure of methylmercury can cause damage to the nervous, genetic, and enzyme systems in the body, leading to a multitude of health complications. Evaluating the amount of Hg in an ecosystem, and thus the risk to organisms, is not straightforward. For example, the concentration of Hg in water or sediment may not be representative of aquatic organisms’ exposure to Hg because not all the Hg in water or sediment is bioavailable. As a result, scientists measure Hg concentrations in sentinels, defined as: an organism that can accumulate Hg within its tissue without significant adverse effects and serve as a representation of the level of Hg present within an ecosystem. Riparian spiders consume emerging aquatic insects and are therefore sentinels of Hg contamination in aquatic ecosystems. The objective of the study was to evaluate the concentration of total Hg in orb-weaving spiders (Family Araneidae) from the Clear Fork and West Fork of the Trinity River and determine how Hg concentration changes with spider body size. Spiders were preserved in 95% ethanol and body size was measured. Spiders were then dried and analyzed using a Direct Mercury Analyzer (DMA).

View Presentation

CHEM2022BERGHULT15005 CHEM

Synthesis and Characterization of Macrocycle Containing Aspartic Acid

Type: Undergraduate
Author(s): Carl Berghult Chemistry & Biochemistry
Advisor(s): Eric Simanek Chemistry & Biochemistry
Location: Third Floor, Table 4, Position 1, 1:45-3:45

The long-term goal of exploring macrocycles is to be able to produce drugs that can interfere with certain protein-protein interactions within cells. This strategy could have the potential to change the way scientists think about drug design. Aspartic acid is a particularly useful to incorporate because it is one of the top five amino acids that contribute to binding at protein-protein interfaces. The acid sidechain of aspartic acid presents significant challenge because of the potential for side reactions. This research has established that an aspartic acid macrocycle can be synthesized quickly in three steps. The route is remarkably efficient and has the characteristics of those that could be used to make drugs. This poster details the chemical synthesis and characterization of this molecule, discusses potential side reactions, and identifies the next steps in advancing this project.

View Presentation

CHEM2022BERNAL27995 CHEM

Towards protein N-terminal acetyltransferase with broad substrate specificity

Type: Undergraduate
Author(s): Alexander Bernal Chemistry & Biochemistry Andrea Guedez Chemistry & Biochemistry Andrew Ryu Chemistry & Biochemistry Youngha Ryu Chemistry & Biochemistry
Advisor(s): Youngha Ryu Chemistry & Biochemistry
Location: Second Floor, Table 3, Position 2, 11:30-1:30

N-terminal acetylation plays an important role in the stability, activity, and targeting of proteins in eukaryotes. Most proteins expressed in bacteria are not acetylated, although the N-terminal acetylation is critical for the activities of a handful of biologically important proteins. Therefore, it is of practical significance to control N-terminal acetylation of recombinant proteins in bacteria. This study is aimed to alter the substrate specificity of RimJ, a protein N-terminal aminotransferase (NAT) that is known to acetylate a few recombinant proteins including the Z-domain in E. coli. The RimJ-mediated protein acetylation occurs at a higher rate when the substrate’s N-terminal amino acid is small. Because of this narrow substrate specificity, RimJ is not applicable for a broad range of recombinant proteins. Based on the AlphaFold-predicted structure of E. coli RimJ (AF-P0A948_F1), we predicted that five amino acids (Y106, M142, N144, Y170, and L171) may recognize substrate proteins in the active site. We created RimJ variants, in which one or two of these five amino acids are changed to alanine, a small neutral amino acid, so that the active site becomes larger to accommodate substrate proteins containing bigger N-terminal amino acid residues. Then, the substrate specificity of RimJ was investigated by co-expressing two Z-domain variants T2I and S3K, which were not acetylated by the wild-type RimJ. The expressed Z-domain variants were purified by immobilized metal affinity chromatography and subsequently analyzed by mass spectrometry, by which a 42-Da mass increment indicates the presence of an N-terminal acetyl group. The RimJ single mutants such as N144A, M142A, and Y106A showed little acetylation on both T2I and S3K Z-domain variants. In contrast, the RimJ double mutants, Y106A M142A, Y106A N144A, and Y170A L171A showed higher acetylation rates on the Z-domain T2I variants. Little acetylation was observed for the Z-domain S3K variant by any of these double mutants. We also created more RimJ variants in which three different amino acids located on the other side of the active site were changed to alanine. These variants will be used to co-express the Z-domain variants, whose N-terminal acetylation patterns will be analyzed by mass spectrometry.

View Presentation

CHEM2022CANNON53386 CHEM

Efficient Synthesis of Macrocycles Using Solid Phase Synthesis

Type: Undergraduate
Author(s): April Cannon Chemistry & Biochemistry Anne Estenson Chemistry & Biochemistry Sydney Mazat Chemistry & Biochemistry Alex Menke Chemistry & Biochemistry
Advisor(s): Eric Simanek Chemistry & Biochemistry
Location: Third Floor, Table 4, Position 3, 1:45-3:45

In the lab, molecules used as drugs are made either in solution (wherein the reactive agents dissolve) or on solid supports referred to as 'beads' (wherein reactive agents are washed over beads and become attached only to be liberated later). The virtue of bead-based synthesis comes with the savings in time and energy normally required to purify the reaction products. That is, solution phase synthesis is work intensive. Here, a route to cyclic molecules synthesized on beads is described. The molecules produced by these bead-based methods have already been prepared in solution for comparison. In addition to evaluating the relative efficiencies of these two routes, the bead-based method can be used to rapidly make 100s-1000s of cyclic molecules. Such numbers are not possible using solution phase methods due to the burdens of purification. The effort relies on tethering an acetal to a reactive bead, followed by a protection and deprotection sequence, the addition of an amino acid using standard peptide coupling strategies and a reaction with a core group that offers the potential for the attachment of 100s-1000s of different groups. Cleavage of this linear molecule from the bead leads to spontaneous cyclization to the desired products. The products will be characterized by NMR spectroscopy and mass spectrometry as well as be assayed for biological activity in a disease model of breast cancer.

View Presentation