ENGR2022ORR4856 ENGR
Type: Undergraduate
Author(s):
Kaily Orr
Engineering
Advisor(s):
Tristan Tayag
Engineering
Robert Bittle
Engineering
Nina Martin
Interdisciplinary
Location: Third Floor, Table 5, Position 2, 11:30-1:30
(Presentation is private)Humans are complex beings that take in a variety of information in a variety of different ways. Understanding that every person processes information in a different way is an important pathway in determining class structure and the method in which information is delivered to students. Students are typically multimodal learners but have a preference for certain learning methods over others. These include but are not limited to lectures, videos, reading, or having a hands-on experience. Professors have the opportunity to enhance the learning environment of their students by either tailoring their teaching method toward individual students, or by using a teaching method that acknowledges and uses each form of learning. The objective of this project is to develop a human ventilation model and corresponding video that can be used during the Case Application Session (CAS) within the Pulmonary Module at the TCU School of Medicine.
ENGR2022RAPISURA64007 ENGR
Type: Undergraduate
Author(s):
Carson Rapisura
Engineering
Angel Fripp
Engineering
Brian Ridzik
Engineering
Carter Wittschiebe
Engineering
Advisor(s):
Robert Bittle
Engineering
Location: Basement, Table 10, Position 2, 1:45-3:45
View PresentationHiller Measurements requested a mechanical design process to produce the internal chassis of their customized aerospace test equipment. The 3D printing team explored additive manufacturing to produce the generatively designed chassis using an MSLA 3D printer and photopolymer resin. The team improved production quality by standardizing support, raft, and print speed settings. Troubleshooting common 3D printing errors included reducing the effects of elephant’s foot, minimizing peeling forces, and adjusting FEP film tightness. Post-processing involved exploring the effect of cure time on material performance by utilizing dynamic vibration testing and tensile & compression testing. Final assessments were made by considering the ease of assembly of all parts and holders. 3D printing was determined to be an effective tool for production when the parts are designed for manufacturing and when the material properties are in accordance with its desired functionality.
ENGR2022SANDOVALAGUILAR32033 ENGR
Type: Undergraduate
Author(s):
Raquel Sandoval Aguilar
Engineering
Advisor(s):
Efstathios Michaelides
Engineering
Location: Basement, Table 6, Position 2, 11:30-1:30
View PresentationThe reduction of CO2 emissions and the avoidance of Global Climate Change necessitate the conversion of the electricity generation industry to rely on non-carbon sources. Additionally, the mitigation of the duck-curve effects in microgrids requires the development of grid-independent buildings. Computations were performed for a cluster of one thousand grid-independent buildings in the North Texas area, where air-conditioning demand is high in the summer months. The electricity demand is balanced with energy supply generated from wind turbines, photovoltaic cells, or stored energy in hydrogen tanks. The results indicate that with one wind turbine operating, each building must be fitted with 10.2 kW rating photovoltaics capacity and a tank with 5.2 m3 of hydrogen storage capacity to satisfy the hourly demand of the buildings’ community. The addition of more wind turbines significantly reduces the needed PV rating but increases the required storage. Investing in energy conservation measures in the buildings significantly reduces both the needed storage capacity and the PV cell ratings.
ENGR2022TREXLER14848 ENGR
Type: Undergraduate
Author(s):
Elizabeth Trexler
Engineering
Joseph Barnes
Engineering
Daniel Perez
Engineering
Jennifer Rios
Engineering
Jack Wenberg
Engineering
Advisor(s):
Robert Bittle
Engineering
Location: Third Floor, Table 4, Position 1, 11:30-1:30
View PresentationThe overall purpose of this project is to create a process for designing and manufacturing a Chassis (Mechanical Enclosure) for Hiller Measurements. As the Industrial Optimization sub-team, we focused on ways to optimize and fully document the process. The goal was to create procedures for utilizing 3-D generative design and printing software that most adults would be able to follow. Outside TCU students with little to no engineering background were brought in to test our procedures.
ENSC2022BASKERVILLE43469 ENSC
Type: Undergraduate
Author(s):
Chandler Baskerville
Environmental Sciences
Lauren Trotter
Environmental Sciences
Advisor(s):
Brendan Lavy
Environmental Sciences
Location: Basement, Table 4, Position 3, 11:30-1:30
View PresentationTrees provide essential ecosystem services to urban environments. Urban forests attenuate air pollution, mitigate flooding, reduce energy consumption, raise property values, promote community cohesion, and enhance quality of life. To maximize these services, colleges, universities, and associated campus organizations engage in a host of activities designed to enhance the structure and function of their urban forests. These activities include protecting and preserving trees, planting and maintaining trees, and offering outreach on the benefits of trees. Additionally, tree measurements present an opportunity to assess the extent to which campus trees provide important services to the university and the surrounding community. The purpose of this research is to quantify the ecosystem services of trees on the TCU campus. We recorded standard tree measurement variables, including trunk diameter, tree height, and crown width. Next, we used i-Tree Eco, an open source urban forestry software from the USDA Forest Service, to quantify the ecosystem services of campus trees. We calculated the following services: 1) pollution removal and human health impacts; 2) carbon sequestration and storage; and 3) hydrology effects, including avoided run-off, interception, and transpiration. Preliminary results indicate that campus trees provide a range of ecosystem services but vary by species and location. We recommend continued maintenance of campus trees and additional tree plantings to maximize ecosystem services.
ENSC2022MARTINEZ1940 ENSC
Type: Undergraduate
Author(s):
Tori Martinez
Biology
Andrew Todd
Environmental Sciences
Macyn Willingham
Biology
Advisor(s):
Matt Chumchal
Environmental Sciences
Location: Basement, Table 8, Position 1, 11:30-1:30
View PresentationLong-jawed orbweaving spiders (Tetragnatha sp.) as Sentinels of Mercury Contamination of the Trinity River
Authors: Tori Martinez, Macyn Willingham, Christopher Allender, Morgan Capone, Matt Chumchal, Ray Drenner, Cale Perry, Robby Peterson, Iris Schmeder, Andrew Todd, Tyler WilliamsHuman-made sources such as coal-fired power plants and artisanal gold mines have large outputs of emissions containing inorganic mercury (IHg), resulting in an overall increase in environmental mercury (Hg) levels across the globe. IHg is not bioavailable and therefore does not normally pose a risk to organisms. However, the conversion of IHg to bioavailable methylmercury (MeHg) that takes place in an aquatic ecosystem threatens human and wildlife health, given that MeHg is a neurotoxin. To investigate this further, the amount of MeHg must be determined for specific locations given that there is a large variation in inorganic mercury deposition throughout various landscapes and ecosystems. Specifically, this project examines the bioaccumulation of MeHg in aquatic food webs and individual bodies of water, through the use of shoreline spiders as a sentinel species. If excess mercury is present within an aquatic food web, there would be a presence of mercury in emergent aquatic insects. Shoreline spiders, then, prey on the emergent aquatic insects, resulting in an accumulation of mercury within their tissue. Shoreline spiders have been proposed as sentinels of MeHg but there have been relatively few studies examining biological factors that could influence the concentration of MeHg in their tissues. The objective of this study is to determine how spider size and sex can influence MeHg concentrations in the Clear and West Fork of the Trinity River. There is existing evidence that the two forks may have varying amounts of mercury accumulation, based on a study done in 2016. This study focused on the long-jawed orb weaver (Family Tetragnathidae; Tetragnatha sp.) shoreline spider, in which over 1000 were captured from June to August 2019. We preserved spiders in 95% ethanol followed by measurement of leg length (a proxy for body size), determination of spider sex and Hg analysis. In this presentation we will discuss the relationship between spider size, sex, and ecosystem contamination levels on Hg concentration.
ENSC2022MORRILL27378 ENSC
Type: Undergraduate
Author(s):
Ashlyn Morrill
Environmental Sciences
Emily LeBlanc
Environmental Sciences
Camilla Price
Biology
Gloria Serrano
Environmental Sciences
Advisor(s):
Brendan Lavy
Environmental Sciences
Location: Second Floor, Table 5, Position 3, 11:30-1:30
View PresentationSince the 19th century, Earth’s average surface temperature has risen 2 degrees Fahrenheit due to an increase in the pollution of greenhouse gases caused by human activity. The magnitude of food waste produced in the United States contributes to climate change through the methane released by the excess food discarded in landfills. Each year, 40 percent of food in the United States is never consumed due to food loss or waste along the supply chain including growers, consumers, retailers, and restaurants (NRDC 2020; SOFA 2019). However, millions of Americans are food insecure or live in areas known as food deserts that have little access to fresh food. Recent estimates suggest 690 million people around the world went hungry in 2019 (UNICEF 2020). For food systems to operate more sustainably, we must promote food recovery processes, one of which is composting. The purpose of this research is to first quantify the amount of food waste produced and then diverted from landfills through a community composting program in Fort Worth, Texas. Our group has partnered with Roy Pope Grocery to collect composting material and deliver it to the UNT Health Science Garden, where it is weighed, processed, composted, and later used in gardening plots. Through composting, we are able to limit the amount of greenhouse gases emitted in the air, in turn, fighting climate change and preventing its negative impacts on Earth’s ecosystem. We are analyzing four months of food waste via descriptive statistics and the EPA’s Waste Reduction Model (WARM).
ENSC2022MUGISHA13032 ENSC
Type: Undergraduate
Author(s):
Jesse Mugisha
Environmental Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Basement, Table 2, Position 1, 1:45-3:45
View PresentationMicrobial interactions with plant biomass contribute significantly to the cycling of nutrients and contaminants in the environment. Primarily among these interactions is the role of fungal-induced degradation of organic matter, its regulatory effects on the carbon cycle, and pollutant transport. This study uses fungal colonization of spent coffee grounds as a model for understanding fungi-plant biomass interactions and their relationship to carbon stability and pollutant removal capacity. Results indicate that fungal-induced alterations of the plant material result in an increase in aromatic and a concomitant decrease in methyl components of the organic matter. This molecular alteration was accompanied by an increase in the carbon content of the remaining material, an increase in the carbon stability as determined by the materials R , and an increase in sorption capacity for cationic species as determined from gentian violet sorption to the materials. The results from this study could contribute additional knowledge to solving grand challenges in climate and pollution.
ENSC2022MUGISHA30720 GEOL
Type: Undergraduate
Author(s):
Jesse Mugisha
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 5, Position 3, 11:30-1:30
View PresentationExcessive greenhouse gas emissions that result from unregulated energy exploitation contribute to climate change and air pollution. One way to restore the carbon balance within the earth’s systems is to increase carbon inputs by capturing atmospheric carbon and storing it in stable reservoirs, also known as Carbon Sequestration. Using the process of photosynthesis, plants absorb carbon dioxide from the atmosphere and convert it to organic carbon that is relatively more stable than gaseous carbon. The ability to sequester carbon varies across different vegetation species and the environments in which they grow. Using ArcGIS tools and free-access remote sensing data, this study will survey the spatial distribution of plant biomass and their effective carbon storage capacity in a case study located in Africa. The results from this study will i) identify facilities with the most effective carbon sequestration potential ii) help conservation programs in making landscaping decisions for future urban developments.
ENSC2022PRICE46925 ENSC
Type: Undergraduate
Author(s):
Camilla Price
Environmental Sciences
Izzy Acheson
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Location: Basement, Table 11, Position 2, 1:45-3:45
View PresentationBats provide many ecosystem services, including pest control, pollination, and seed dissemination, which are economically beneficial to humans. Yet as human populations continue to grow, leading to the increasing loss, degradation, and fragmentation of natural habitats to urban sprawl, wildlife species including bats are having to adapt to this unnatural environment. One important resource that bats must access in such environments is water. In natural landscapes, bats drink from ponds, lakes, streams, rivers, and even puddles, but in human-modified areas, studies have shown that bats can drink from drainage ditches, cattle troughs, and residential swimming pools. However, it is generally assumed that these resources are not preferred and, if present, more semi-natural water sources, such as retention and ornamental ponds, would be preferentially used. But what if we are incorrectly assuming that all semi-natural water sources are readily accessible and available to bats. To explore this uncertainty, we conducted behavioral observation surveys using thermal cameras and acoustic detectors to determine whether semi-natural water sources within Fort Worth, including the retention pond on the Texas Christian University (TCU) campus, were suitable for bats. Specifically, we compared bat drinking activity at these ponds and identified pond characteristics that might deter or encourage bats to drink at them. Our study revealed that the presence of artificial lights represented a major characteristic that deterred bats. In particular, we found that only when flood lights from the TCU soccer field were turned off, bat activity was recorded at the TCU retention pond. This result confirmed that not all water sources are readily accessible and available to bats, but turning lights off when they are not needed could effectively improve water availability for bats. It is findings such as these that can inform the enrichment of urban environments for bats and, therefore, aid their conservation.