ENGR2021HOYLE51195 ENGR
Type: Undergraduate
Author(s):
Zachary Hoyle
Engineering
Advisor(s):
Robert Bittle
Engineering
Location: Zoom Room 2, 01:02 PM
View PresentationDryer Testing
The parameters which were used to test the dryer was that the incline was set at 5 degrees, and the dryer rpm was at 5 and 10. Further, we used four rows of 90-degree lifters followed by four rows of radial lifters. We tested using a small grain limestone sample to be a middle of the road test. Originally, we started testing with one scoop (one quart) inside the cylinder, started the motor and turned to the 10 rpm, and added one quart every ten seconds until 4 total scoops were through the cylinder. The time this took was consistently right around the 90 second mark. However, when the volume was turned up, the findings were more interesting. When we started with a full five gallons inside of the cylinder, turned the motor up until 10 rpm, and added another five gallons at the 30 second mark, the time that it took for all of the material to exit the cylinder was right around the 90 second mark, the same time as when only a gallon of material went through the dryer.
ENGR2021LY50883 ENGR
Type: Undergraduate
Author(s):
Jeremy Ly
Engineering
Kien Nguyen
Computer Science
Advisor(s):
Sue Gong
Engineering
Liran Ma
Computer Science
Location: Zoom Room 2, 01:10 PM
View PresentationWe accumulate several cloud services on Amazon Web Services (AWS) into developing a serverless system in the cloud that replaces the current technical support request, which occurs via calls, in a classroom setting. The instructor can notify the so-called IT person with a press on the programmable Internet of Things (IoT) button. We plan to deploy the system at our university as a way for class instructors to request help without interrupting the lecture. The system is low-cost thanks to AWS's pay-as-you-go policy and easy to install.
ENGR2021NGUYEN37327 ENGR
Type: Undergraduate
Author(s):
Viet Nguyen
Engineering
Advisor(s):
Efstathios Michaelides
Engineering
Location: Zoom Room 1, 02:47 PM
(Presentation is private)The most viable path to alleviate the Global Climate Change is the substitution of fossil fuel power plants for the generation of electricity with renewable energy units. The substitution requires the development of very large (utility-level) energy storage capacity, with the inherent thermodynamic irreversibility of the storage-recovery process. Currently the world also experiences a significant growth in the numbers of electric vehicles, which use very large batteries. A fleet of electric vehicles is equivalent to a relatively efficient storage capacity that may be used to supplement the energy storage system of the electricity grid. Calculations based on the demand-supply data of a large electricity grid show that, even though a fleet of electric vehicles cannot provide all the needed capacity for a large electricity grid, the superior round-trip storage efficiency of batteries significantly reduces the energy dissipation associated with the storage and recovery processes. A very small amount of battery storage significantly reduces the dissipated energy in the electricity grid. Also, improvements in the round-trip efficiencies of batteries are three times more effective than improvements in hydrogen storage systems.
ENGR2021ROESKE35892 ENGR
Type: Undergraduate
Author(s):
Kyle Roeske
Engineering
Advisor(s):
Robert Bittle
Engineering
Location: Zoom Room 4, 01:26 PM
View PresentationThe dryer is a steel cylinder, approximately 36 inches in diameter and five feet in length. The cylinder also spins at a rate up to 10 rpm. The inside surface contains 48 lifters. These lifters have two variants and are made of mild steel. They are designed to move limestone through the cylinder while the cylinder spins.
ENGR2021VANDERBROOK7258 ENGR
Type: Undergraduate
Author(s):
Richard Vanderbrook
Engineering
Biology
Advisor(s):
Robert Bittle
Engineering
Location: Zoom Room 6, 03:03 PM
View PresentationThe drying of limestone is usually done industrially in a rotary drum dryer. The purpose of this project is to generate a model that will predict limestone particle motion as it passes through the dryer. By creating an accurate model of the particle movement during the drying cycle, the operator will be able increase the dryer’s efficiency. Using basic physics and through experimental testing, our team was able to produce a model that will provide detail of particle motion inside the dryer.