Filter and Sort







COSC2018HENDRICK21849 COSC

Analysis of Artificial Intelligence Techniques for Konane

Type: Undergraduate
Author(s): Kaitlin Hendrick Computer Science
Advisor(s): Michael Scherger Computer Science

This research analyzes artificial intelligence techniques for Konane. The game Konane, also known as Hawaiian checkers, is a two-player, zero-sum strategy board game ideally suited for this research. The game ends when a player does not have a move in which they can capture an opponent’s piece. In order to have a successful strategy, a player must consider many future possibilities. For this reason, this project compares computing agents that use informed and uninformed searching algorithms. We focus our investigation on the effectiveness of the minimax and minimax with alpha-beta pruning algorithms. By altering several variables, specifically the cutoff depth for searching the game tree, we begin to see varying levels of success from the competing computing agents. The outcome of this research will be an analysis of the effectiveness of each computing agent. One of our evaluation metrics will be games statistics, such as ratio of wins to losses, time to win, and how many pieces lost.

View Presentation

COSC2018LARSEN32693 COSC

Distinct Sound

Type: Undergraduate
Author(s): Nicholas Larsen Computer Science Harrison Cao Computer Science Minh Hoang Computer Science
Advisor(s): Liran Ma Computer Science

Distinct Sound
In the United States alone, 48 million people suffer from hearing loss. Sadly, about only 20 percent of them who could benefit from a hearing aid can afford to wear one. However, most people have a smartphone. Therefore, Distinct Sound strives to create an iPhone application that possesses similar functionalities of a conventional hearing aid at a fraction of the price. The two main objectives of our application are to remove background noise and to amplify sound in certain frequency ranges needed for speech comprehension. To complete those tasks, our app will take input sound, process that sound and amplify the frequencies that the user cannot hear as well, then replay the processed sound to the speakers through headphones. Those tasks will involve the fast fourier transform, and some sound processing to make sure that the sound does not have gaps. The app also provides a test to check the accuracy of the prescription in the current environment. If the current environment needs to adjust the prescription to make it more comfortable for the user, then a calibration test will work to fix the prescription according to the current environment. In conclusion, the research project will be considered a success if the application can successfully serve as a hearing aid with some functions that are unique on the market. It should benefit people who cannot afford traditional hearing aids.

View Presentation

COSC2018REDDICK19284 COSC

An Ethereum-based Decentralized Voting Platform

Type: Undergraduate
Author(s): Luke Reddick Computer Science
Advisor(s): Liran Ma Computer Science

This paper covers a comprehensive implementation of a blockchain based voting platform. Blockchain, in its infancy, has shown remarkable use cases with cryptocurrencies and we would like to expand upon its possibilities. Voting is a system ripe with opportunity for blockchain; it requires security, consensus, and portability- all qualities inherited from blockchain technology. In this paper, we discuss the appeal of blockchain technology and why we want to elevate voting to 21st century technology. Next, we survey the needs of a voting platform and how blockchain might satiate those requirements. Finally, we propose a voting platform that will run on the Ethereum network and systematically discuss how this application could come to fruition.

View Presentation

ENGR2018DEVOOGHT32056 ENGR

FDM 3D Printing Mechanical Properties

Type: Undergraduate
Author(s): Luke Devooght Engineering Melina Aguera Engineering
Advisor(s): Becky Bittle Engineering

In this experiment, the mechanical properties of 3D printed specimens of different printing parameters were tested under tension. The printing parameters of these specimens were: surface resolution, infill density, and print orientation. Parts were printed in Acrylonitrile Butadiene Styrene (ABS) plastic with a Fused Deposition Modeling (FDM) printer called the Stratasys UPrint SE Plus. Specimens were first printed similar to Stratasys published material properties standards and then tested to form a control on these known properties. Factorial sets of specimens using all various parameters were then printed and tested to create a reference table for future engineering projects.

View Presentation

ENGR2018ELLIOTT14728 ENGR

Rare Earth Elements

Type: Undergraduate
Author(s): Lindsey Elliott Engineering
Advisor(s): Robert Bittle Engineering Efstathios Michaelides Engineering Ken Morgan Geological Sciences

From an engineering perspective, Rare Earth elements have the potential to transform technology in previously unprecedented ways. Their magnetic, luminescent, and electromechanical capabilities are allowing electronic devices to become more compact, reduce emissions, operate more efficiently, and cost less to produce and purchase. Such developments are proving beneficial to the economies of many developed nations because of their use in popular everyday consumer technologies as well as industries such as healthcare and education.

Along with this positive impact comes a political overlay that threatens the longevity of Rare Earth use. Presently, Rare Earths are expensive and dangerous to extract. This is largely due to the fact that they are not found together in large concentrations, so it is only economically feasible to extract them with another material, such as coal. The process of extraction is also hazardous and cumbersome; separating Rare Earths from other materials involves processes with high levels of emissions that may be dangerous to human beings if overexposure occurs. On the other hand, nations with more flexible safety and health regulations are investing in the development of Rare Earths and setting themselves apart as production leaders. Nations with more stringent health and safety regulations are becoming dependent on these nations to provide the Rare Earths for their applications. As a result, leaders in engineering industry can only benefit from Rare Earths if they develop systems that use Rare Earths more effectively than other materials commercially available and develop a reliable business relationship with a Rare Earth supplier. This condition is not likely to be encountered frequently in today's intricate social webs and economic systems.

The possibility of extracting Rare Earths through more efficient, safer processes is becoming recognized as a relevant topic of research. Additionally, investigation into alternatives to Rare Earths in some of the more common applications may allow for safer and less politically charged production methods for many 21st century advancements.

Through literary investigation, this research project seeks to highlight the main characteristics that makes Rare Earths desirable from an engineering perspective, proposed alternatives to Rare Earths based on engineering demands, and the direction of the Rare Earth industry as a result.

View Presentation