Filter and Sort







PHYS2024KALLUHOLEMATHAM15498 PHYS

Cathodoluminescence as a means of studying GaOOH and Ga2O3

Type: Undergraduate
Author(s): Devansh Matham Physics & Astronomy Dustin Johnson Physics & Astronomy Tiffany McHenry Physics & Astronomy Madeline Smit Physics & Astronomy Yuri Strzhemechny Physics & Astronomy
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Basement, Table 1, Position 3, 1:45-3:45

Currently our lab is designing a system that allows us to leverage cathodoluminescence spectroscopy to study the optoelectronic properties of gallium oxyhydroxide and gallium oxide. This system would allow us to place our samples within a vacuum chamber and irradiate it with a high-energy electron beam, causing light emissions that are then collected by a fiber optic cable. This optical system allows us to capture the emissions and investigate them as its characteristics are dependent on the material properties of the sample. Furthermore, since we are working in ultra-high vacuum conditions, the components of the system have to be designed with careful consideration, in addition to allowing several degrees of freedom in order to precisely position our sample within the vacuum chamber.

View Presentation

PHYS2024KAVOOR45385 PHYS

Using mathematical modeling to characterize the effectiveness of different oncolytic herpes viruses

Type: Undergraduate
Author(s): Aditi Kavoor Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Basement, Table 11, Position 1, 1:45-3:45

The herpes virus, like many other viruses, can be engineered to target and kill cancer cells. The herpes virus, when loaded with immune stimulating factors, like interleukin 12, can be even more effective at killing cancer cells. We use a mathematical model of oncolytic virus infection and apply it to experimental data from Fukuhara et al. (2023) to assess the effectiveness of different herpes virus strains in treating cancer. We are able to estimate virus characteristics such as viral production rate and infectious lifespan of the different strains, allowing for a quantitative comparison. This type of analysis can help identify which strains are most effective at killing tumors.

View Presentation

PHYS2024MALKOTI11205 PHYS

Modeling pulsed drug treatment with a constant drug in cancer growth models

Type: Undergraduate
Author(s): Prateek Malkoti Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: First Floor, Table 5, Position 1, 1:45-3:45

Researchers use mathematical models of cancer to study the effectiveness of different regimens of chemotherapy when treating tumors. These models help predict how different treatments affect cancer cell growth in hopes of determining which will effectively kill a tumor. Realistic pulsed drug treatments are computationally expensive and difficult to analyze mathematically. We examine when the effect of a pulsed drug treatment can be well-represented by a constant dose model. Our approach studies treatment applied in various cancer growth patterns, such as exponential, linear, logistic, Mendelsohn, surface, Gompertz, and Bertalanffy models. Mathematically modeling and analyzing the comparison between tumor growth under a pulsed drug treatment and under a constant dose helps us understand when the use of the simpler model can make accurate predictions.

View Presentation

PHYS2024MCCARTHY60528 PHYS

Structural and Practical Identifiability Analysis of Models for Syncytia Growth

Type: Undergraduate
Author(s): Gabriel McCarthy Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Basement, Table 5, Position 3, 11:30-1:30

Syncytia are the multinucleated cells that can occur due to virus infection of cells. Mathematical models in the form of ordinary differential equations can be used to simulate the growth of these infections. Several ODE models can explain syncytia growth. Before employing these models on actual data, it is essential to analyze their structural and practical identifiability. Structural identifiability is an inherent property of each model and its parameters, referring to our ability to determine parameter values for the model. Practical Identifiability analysis of a model is concerned with accurately determining parameter values given experimental error. Obtaining accurate parameter values allows us to make conclusions about our data within the context of our model that can provide insight into the nature of the spread of syncytia. These two techniques allow us to determine whether or not the parameters of a model are identifiable with the data we plan to collect. Consequentially, we can plan experiments adequately to truly parameterize the data in the contexts of our model and make accurate conclusions.

View Presentation

PHYS2024MCHENRY4640 PHYS

Hydrothermal Synthesis and Characterization of Gallium Oxide Micro and Nanocrystals

Type: Undergraduate
Author(s): Tiffany McHenry Physics & Astronomy Pavan Ahluwalia Physics & Astronomy Dustin Johnson Physics & Astronomy Devansh Kalluhole Physics & Astronomy Madeline Smite Physics & Astronomy Yuri Strzhemechny Physics & Astronomy
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Second Floor, Table 6, Position 2, 1:45-3:45

Currently, research of gallium oxide (GO) nano- and microcrystals is rapidly expanding with the demand for potential uses. GO has been shown to be a promising material for possible applications in many different fields including photocatalysis, biomedicine, and optoelectronic devices. In our lab (led by Dr. Strzhemechny) we examine both the fundamental (nature of crystal defects) and applied (antibacterial action) properties of GO. During the hydrothermal growth process of GO, we are producing different nano and microscopic morphologies of this material by controlling various growth parameters including varied pH and adding surfactants to the material. The synthesis procedure includes using the precursor material, gallium nitrate hydrate, ammonium hydroxide. We use a calcination furnace that can get to temperatures high enough to effectively synthesize GO. Now, with a thermocouple and pyrometer we can predict outcomes during the calcination step with high accuracy and precision.

View Presentation