ENSC2022WASHINGTON18159 ENSC
Type: Undergraduate
Author(s):
Morgan Washington
Environmental Sciences
Aria Tirion
Environmental Sciences
Advisor(s):
Gehendra Kharel
Environmental Sciences
Location: First Floor, Table 5, Position 1, 11:30-1:30
View PresentationThe United States Environmental Protection Agency (US EPA) classifies nearly 28% of assessed rivers and streams in Texas as impaired due to pathogenic bacteria in the water. One such stream is the Village Creek, a tributary of the Trinity River in north-central Texas. Therefore, this study in the Water and Society Lab at TCU aims to monitor Escherichia coli (E. coli) concentration in the Village Creek.
In this ongoing study, we collect water quality samples weekly, incubate them for 24 hours at 35 °C, and then determine the presence or absence and total E. coli count as CFU (colony forming units) using the US EPA-approved Colilert system. E. coli over 126 CFU per 100 mL water sample indicates unsafe levels per the Texas Commission on Environmental Quality and the US EPA. Based on the analysis of 16 samples, the average, minimum, and maximum E. coli counts are 324.4 CFU, 15.5 CFU, and 1620 CFU, respectively. The next important step in this study is to build the statistical relationship of E. coli with different hydro-climatological variables, including streamflow, rainfall, ambient temperature, water temperature, pH, conductivity, and turbidity. The findings of this study will help make water quality and water resources management decisions in the north-central Texas region.
GEOL2022HART36153 GEOL
Type: Undergraduate
Author(s):
William Hart
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Third Floor, Table 10, Position 1, 1:45-3:45
View PresentationFort Worth, Texas has become one of the most populated areas in the United States. With a growing influx of commuters on a daily basis, there is no doubt that there will be a large amount of car crashes in the city. According to the Texas Department of Transportation, in 2020 there were over 15,000 car crashes while in 2021 there were over 17,000 car accidents. In 2022 alone there have been over 3000 car crashes already. Many of these car crashes are likely avoidable and finding the areas that are most susceptible to these accidents will be valuable knowledge for drivers and the city. Applying ESRI ArcGIS Pro’s spatial analysis extension to the Texas Department of Transportation's car accident the roads of Fort Worth with high crash and fatality rates will be found and mapped accordingly.
GEOL2022KOLLI60503 GEOL
Type: Undergraduate
Author(s):
Navya Kolli
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 1, Position 3, 1:45-3:45
View PresentationFor this research project, geospatial analysis will be utilized to study tornado outbreaks in Alabama, and to analyze the impact of major tornado events at different times (1974-2020) in the specified study regions and analyze that as well. This project is significant because these tornado outbreaks resulted in many deaths and lots of devastation in the region. By studying these tornadoes closely, a better understanding of the tornado events will be developed .
The goal of the study is to compare the relationship of elevation to the severity of the tornadoes (EF Scale) as well as look into how surface modification has amplified the effect of the tornadoes to analyze results more closely. Other primary goals are to 1) map the tornado track and 2) to analyze the change in the impact of tornadoes over time, taking land surface changes, elevation, and EF values into consideration to better understand the relation between them. In terms of the time series analysis, I will look into major tornado outbreaks that affected the study sites from 1974-2020. All of this will be accomplished using ArcMap, Google Earth Engine, and possibly other programs/tools. Relevant datasets are coming from LANDSAT, Sentinel 1 and 2, Digital Elevation Model (DEM), and from other possible sources.
GEOL2022NEWELL1156 GEOL
Type: Undergraduate
Author(s):
Brooke Newell
Geological Sciences
Omar Harvey
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Third Floor, Table 3, Position 3, 11:30-1:30
View PresentationAs the nature and quantity of new/novel nanomaterials continue to expand to meet industrial, medical, and domestic demands, their accidental or intentional release becomes inevitable. To this end, an evolving understanding of the interaction dynamics between nanomaterials and naturally-occuring geomaterials is central to supporting continued sustainable development and use of nanomaterials. The current study explores the chemodynamics of the organic nanomaterial, polyamidoamine (PAMAM), binding to (and debinding from) ferrihydrite. Specific focus is placed on how PAMAM size affects the quantity, kinetics and dynamics for three carboxyl-terminated PAMAMs (Gx.5-COOH) sorbing/desorbing to/from the variably-charged ferrihydrite (FFH). Early results suggest that at pH 5, the smaller PAMAM G1.5-COOH sorbed/desorb to/from FFH in similar quantities but at slower rates than G3.5-COOH. Sorption/desorption was also found to occur via 1- or 2-steps with a faster surface-mediated step being followed by a slower diffusion-mediated step and the proportion of surface-mediated: diffusion-mediated sorption/desorption increasing with PAMAM size (i.e. G1.5-COOH<G3.5-COOH). This presentation will further cover results obtained with G5.5-COOH PAMAM.
GEOL2022WILSON42369 GEOL
Type: Undergraduate
Author(s):
Audrey Wilson
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Third Floor, Table 9, Position 2, 11:30-1:30
View Presentation