Filter and Sort







BIOL2021MIELCUSZNY31700 BIOL

Evaluating sex-specific differences in cellular immune function in a small fish model, the fathead minnow

Type: Undergraduate
Author(s): Andrew Mielcuszny Biology
Advisor(s): Marlo Jeffries Biology
Location: Zoom Room 3, 02:47 PM

Evaluating sex-specific differences in cellular immune function in a small fish model, the fathead minnow

Andrew Mielcuszny
Department of Biology

Advisor: Dr. Marlo Jeffries

Previous studies in the Jeffries lab have shown that male and female fathead minnows differ in their ability to fight and survive bacterial infections. Specifically, males have significantly higher rates of mortality upon infection than females. Despite this, few studies have sought to identify the sex-specific differences in specific immune processes that underlie the observed differences in survival following pathogen infection. The purpose of this study was to examine the sex-specific differences in phagocytic cell activity, a key innate immune response in which immune cells engulf and destroy pathogens. To evaluate phagocytic cell activity, kidney cells were isolated from male and female adult fathead minnows and their ability to phagocytose fluorescently-labeled E. coli was measured. The relative phagocytic cell activity of male and female fathead minnows will be presented in an effort to explain whether differences in phagocytosis contribute to differences in pathogen resistance.

View Presentation

BIOL2021ROLFE47714 BIOL

Shoreline Spiders as Sentinels of Mercury Contamination of the Trinity River

Type: Undergraduate
Author(s): Ian Rolfe Biology Michael Hembrough Biology
Advisor(s): Ray Drenner Biology Matt Chumchal Biology
Location: Zoom Room 4, 03:03 PM

Mercury (Hg) is found in the environment in excess of historic baselines throughout the globe because of widespread atmospheric emissions of inorganic mercury (IHg) from anthropogenic sources such as coal-fired power plants and artisanal gold mines. In aquatic ecosystems, Ihg deposited from the atmosphere is converted by bacteria to methylmercury (MeHg), a bioavailable neurotoxin that adversely affects the health of vertebrates including humans and wildlife. Because IHg deposition varies across the landscape, it is necessary to monitor MeHg levels in aquatic food webs of individual waterbodies. This is a challenge because there are millions of river miles and lakes in the U.S. Shoreline spiders that feed on MeHg-contaminated emergent aquatic insects have been proposed as sentinel species to monitor MeHg contamination. Sentinel species are species which serve to map the bioavailable fraction of pollution in an ecosystem by retaining the pollutants in their tissue. The objective of this study was to test the hypothesis that shoreline spiders can be used as sentinels to evaluate MeHg contamination of river food webs. Our study focused on the Clear and West forks of the Trinity River. A pilot study in 2016 indicated the two forks have different levels of MeHg contamination. From June to August 2019, we collected over 1000 long-jawed orb weaver spiders (Tetragnathidae) along the shorelines of the two forks of the river. Spiders were preserved in 95% ethanol and sorted by leg length into different size categories. Mercury was analyzed using direct Hg analysis. Concentrations of Hg in spiders increased with spider size and was higher in the Clear Fork than the West Fork. A follow up study confirmed that fish in the Clear Fork had higher concentrations of MeHg than in the West Fork. This is one of the first studies to demonstrate that shoreline spiders can be used as sentinels of MeHg contamination in river ecosystems.

View Presentation

BIOL2021RYAN2552 BIOL

An assessment of potential river otter habitat in the Dallas/Fort Worth Metroplex

Type: Graduate
Author(s): Patrick Ryan Biology
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Zoom Room 1, 12:38 PM

For this project, I mapped potential river otter habitat in the Dallas/Fort Worth metroplex based on literature data on known river otter habitat preferences in Texas. I will use this data along with GIS data on land use/cover/vegetation and distance from suitable water bodies, to determine where in the DFW river otters may prefer to live. This project is interesting and informative because in recent years more urban run-ins with river otters have been documented in the DFW. So knowing where they might like to be is good information for citizens to have, as river otters continue to make a comeback in numbers in the state of Texas.

(Presentation is private)

BIOL2021SEGALA33133 BIOL

The effects of light availability, prey capture, and their interaction on pitcher plant morphology

Type: Graduate
Author(s): Michael Segala Biology John Horner Biology
Advisor(s): John Horner Biology
Location: Zoom Room 5, 02:31 PM

Carnivorous plants inhabit nutrient-poor environments and supplement nutrient acquisition by capturing and digesting insect prey. Carnivorous adaptations have been hypothesized to be beneficial only in environments with high water and light availability. We hypothesized that plant morphology would change in response to resource availability, exhibiting traits that increase carnivory when light is abundant and exhibiting traits that increase photosynthesis when light is limited. In a field manipulation in Leon County, Texas, we examined the effects of feeding, shading, and their interaction on the morphology of the pitcher plant, Sarracenia alata. We employed a two-factor, cross-classified design, with shading (two levels, shaded and unshaded) and prey capture (two levels, fed and unfed) as factors. Eighty plants were haphazardly assigned to one of four treatments: (1) unshaded and fed (control); (2) shaded and fed; (3) unshaded and unfed; and (4) shaded and unfed. When light availability was reduced, plants produced pitchers that had smaller diameters, which is reflective of a photosynthetic morphology. Unfed plants exhibited reduced growth (produced fewer pitchers and had lower sum of pitcher heights). There was a significant interaction effect on estimated seasonal aboveground biomass: shading had no effect on the mass of unfed plants, but shading reduced the mass of fed plants. As the season progressed, competing vegetation reduced light availability to all pitchers. Plants in all treatments began to produce pitchers that were blade-like with a small, non-functional opening and a widened keel. This morphology would maximize light capture at the expense of prey capture. This experiment provides support for a theoretical model that suggests that carnivorous traits are only beneficial under conditions of high light availability. It also emphasizes the importance of periodic burns of carnivorous plant bogs to remove vegetation, thereby reducing light competition.

View Presentation

CHEM2021AGUIAR5885 CHEM

Optimizing the Synthesis of Macrocycles

Type: Undergraduate
Author(s): Isabella Aguiar Biology
Advisor(s): Eric Simanek Chemistry & Biochemistry
Location: Zoom Room 3, 01:42 PM

In recent years, macrocycles have emerged to be potential drug leads, as they show to have promise for targeting disease pathways, however their synthesis is quite difficult and has yet to be optimized. Utilizing glycine specifically in macrocycle synthesis was the objective, and this was done by stepwise reactions of successfully adding compounds onto glycine to prepare for cyclization. Cyanuric chloride, BOC-hydrazine, and morpholine were successfully added to glycine, as proven with thin layer chromatography and NMR. However, problems that arose came with purifying the compound for cyclization due to solubility issues. Many attempts utilized column chromatography, but there seems to be promise in utilizing an extraction to purify the compound and prepare for cyclization.

View Presentation

CHEM2021CRUZBARRIOS15423 CHEM

Determination of Critical Micelle Concentration from Diffusion-Driven Dilution of Micellar Aqueous Mixtures

Type: Graduate
Author(s): Eliandreina Cruz Barrios Chemistry & Biochemistry Onofrio Annunziata Chemistry & Biochemistry
Advisor(s): Onofrio Annunziata Chemistry & Biochemistry
Location: Zoom Room 3, 12:54 PM

Micellization is a phenomenon of central importance in surfactant solutions. Here, we demonstrate that the diffusion-based spreading of the free boundary between a micellar aqueous solution and pure water yields a one-dimensional spatial profile of surfactant concentration that can be used to identify the critical micelle concentration, here denoted as C*. This can be achieved because dilution of micelles into water leads to their dissociation at a well-defined position along the concentration profile and an abrupt increase in diffusion coefficient. Rayleigh interferometry was successfully employed to determine C* values for three well-known surfactants in water at 25 ºC: Triton X-100 (TX-100), Sodium Dodecyl Sulfate (SDS), and Polyoxyethylene(4)Lauryl Ether (Brij-30). The dependence of C* on salt concentration was also characterized for TX-100 in the presence of Na2SO4, NaCl, and NaSCN. Accurate values of C* can be directly identified by visual inspection of the corresponding concentration-gradient profiles. To apply the method of least squares to experimental concentration profiles, a mathematical expression was derived from Fick’s law and the pseudo-phase separation model of micellization with the inclusion of appropriate modifications. While Rayleigh interferometry was employed in our experiments, this approach can be extended to any experimental technique that yields one-dimensional profiles of surfactant concentration. Moreover, diffusion-driven surfactant disaggregation is precise, non-invasive, requires single-sample preparation, and applies to both non-ionic and ionic surfactants. Thus, this work provides the foundation of diffusion-driven dilution methods, thereby representing a valuable addition to existing techniques for the determination of C*.

(Presentation is private)

CHEM2021EDWARDS17380 CHEM

SQUARAINE DYES AS ENVIRONMENT-SENSITIVE PROBES WITH MULTIPLEXING ABILITIES

Type: Undergraduate
Author(s): Lauren Edwards Chemistry & Biochemistry Luca Ceresa Physics & Astronomy Jose Chavez Physics & Astronomy Sergei Dzyuba Chemistry & Biochemistry Zygmunt Gryczynski Physics & Astronomy Daniel Ta Chemistry & Biochemistry
Advisor(s): Sergei Dzyuba Chemistry & Biochemistry
Location: Zoom Room 5, 03:19 PM

Organic dyes with photophysical properties affected by alterations in the properties of the media, including viscosity, temperature, and polarity, are known as environment-sensitive probes. These probes are widely used in various areas of analytical, biological and material sciences. This poster will describe our initial efforts on designing multi-responsive environment-sensitive probes based on squaric acid scaffolds. Specifically, the incorporation of aminoquinoline moieties produced small molecule viscometers, which have the ability to sense polarity variations of organic solvents. Multiplexing abilities, coupled with modular and facile synthesis, distinguishes these probes from other types.

(Presentation is private)

CHEM2021FREIRE63707 CHEM

Hydrogen Peroxide Disproportionation with Manganese Macrocyclic Complexes of Cyclen and Pyclen

Type: Graduate
Author(s): David Freire Chemistry & Biochemistry Debora Beeri Chemistry & Biochemistry Kristof Pota Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry Benjamin Sherman Chemistry & Biochemistry
Location: Zoom Room 6, 01:34 PM

Oxidative stress is a result of an imbalance between reactive oxygen species (ROS) and the availability/activity of antioxidants. The catalase family of enzymes mitigate the risk from ROS by facilitating the disproportionation of hydrogen peroxide into molecular oxygen and water. Manganese containing catalase (MnCAT) consists of a binuclear manganese core bridged by carboxylate and single-atom ligands, likely water or hydroxide. In this work, hydrogen peroxide disproportionation using complexes of manganese with cyclen and pyclen were investigated due to the spectroscopic similarities of the latter with the native MnCAT enzyme. Potentiometric titrations were used to construct speciation curves to identify what complex compositions were present at different pH values. Based on these results, the complexes were made in situ by mixing stock solutions of ligand, buffer, and metal. The hydrogen peroxide disproportionation reaction was carried out in a sealed cell and PO2 measured using a microsensor (Unisense). When hydrogen peroxide was injected into the cell, disproportionation activity of the complexes was evident by (1) appearance of bubbles in solution, and (2) noticeable increase in PO2 as measured by the sensor. Spectroscopic investigation before, during, and after the reaction was used to follow changes in the UV-visible absorption of the complexes to collect information about the structure of the initial catalyst and any possible intermediate. Both, pyclen and cyclen were determined to form a dimeric structure under the reaction conditions used.

View Presentation

CHEM2021GLOOR37466 CHEM

Synthesis of Isoleucine Based Macrocycles

Type: Undergraduate
Author(s): Camryn Gloor Chemistry & Biochemistry
Advisor(s): Eric Simanek Chemistry & Biochemistry
Location: Zoom Room 3, 02:23 PM

Many drugs today are small molecules and function through a specific binding with their target. This has proved to be efficient, yet the idea of larger macromolecules being used as drugs has grown more popular because of their flexibility. The issue with these larger molecules is that they have been previously difficult to synthesize. The emphasis of the research is to find an efficient way to synthesize macrocycles, reducing purification processes and side products. All reactions are done in solution and column chromatography is used to purify. An important aspect is testing if this cyclization method is possible with all amino acids or if limitations are present based on the backbone of the molecule. Because macrocycles have proved difficult to synthesize in the past, they are overlooked in the field of drug design. However, with this rather basic process it is possible to create new rules associated with drug design and defy what was once believed about macrocycles.

View Presentation

CHEM2021GUEDEZ50076 CHEM

Genetic selection of sarcosine-specific synthetic riboswitches from a glycine riboswitch

Type: Graduate
Author(s): Andrea Guedez Chemistry & Biochemistry
Advisor(s): Youngha Ryu Chemistry & Biochemistry
Location: Zoom Room 6, 12:38 PM

The aptamer domain of a naturally occurring glycine riboswitches was randomized to generate a library containing billions of different variants. The dual genetic selection of this library was performed for sarcosine, a prostate cancer marker, and successfully led to the identification of sarcosine-specific synthetic riboswitches. When a chloramphenicol-resistance gene was expressed under control of these riboswitches, E. coli cells showed chloramphenicol resistance only in the presence of sarcosine. For a colorimetric assay, the sarcosine riboswitch gene was inserted upstream of the lacZ gene. When tested with various concentrations of sarcosine, the enzymatic activity of LacZ was proportional to the amount of sarcosine, clearly indicating the sarcosine-dependent gene regulation by the sarcosine riboswitch.

(Presentation is private)

CHEM2021HENDERSON7043 CHEM

DFT Simulations of the pKa Values of Triazines

Type: Graduate
Author(s): Nicholas Henderson Chemistry & Biochemistry
Advisor(s): Benjamin Janesko Chemistry & Biochemistry Eric Simanek Chemistry & Biochemistry
Location: Zoom Room 1, 12:46 PM

Triazines appear in pharmaceuticals, agrochemicals, and as building blocks for polymers used in materials science and medicine. Predicting the structure and dynamics in water as a function of pH requires reliable simulations of the pKa values for different sites for protonation. We present the initial DFT methods and continuum solvent for pKa of amines, ring nitrogens, and 2,4,6-triamino-1,3,5-triazine (melamine) derivatives. These M06-2X/6-311++G(2d,2p) calculations in SMD continuum solvent provide consistent accuracy for tested systems, use for future studies of more complex structures.

View Presentation

CHEM2021JELINEK6743 CHEM

Synthesis of Organic Macrocycles for Anti-Microbial Testing

Type: Undergraduate
Author(s): Trevon Jelinek Chemistry & Biochemistry
Advisor(s): Eric Simanek Chemistry & Biochemistry Shauna McGillivray Biology
Location: Zoom Room 3, 02:55 PM

Organic synthesis and research into the activity and uses for macrocycle compounds have increased in recent years. These compounds proved to be an interesting field of research due to their size and ability to orient in different ways depending on the environment. The synthesis of these molecules is done by using a stable foundation molecule, cyanuric chloride, which is subject to substitution. The compound can be built from there using nucleophilic substitution with various nitrogen-based compounds. Then, in the final steps of the synthesis, the compounds dimerize forming the macrocycle. The amino acid nucleophile used to build the molecule is being varied to build many different compounds. The challenge, however, is to find the most efficient route for synthesis. I have successfully managed to synthesize one macrocycle compound using lysine with a Z protecting group as the starting material. Throughout the synthesis there was great difficulty with the compound’s solubility, therefore the starting material was switched to a BOC protected lysine amino acid. This resulted in better solubility throughout the process and yielded another successful macrocycle. These results demonstrate how the synthesis pathway we used to build these macrocyclic dimers is successful, but the process can be variable, based on the properties of the amino acid. It is recognized how the synthesis of these compounds is only the first step and further research into the properties and actions of the compounds is necessary. However, a pure product and efficient synthesis in making the macrocycle is important to properly access its properties. My further research will specifically test the antibiotic properties, if any, the macrocycles possess.

View Presentation

CHEM2021NGUYEN20674 CHEM

Evaluating the therapeutic efficacy of a small indole-containing tetra-aza macrocyclic pyridinophane for treatment of Alzheimer's Disease

Type: Undergraduate
Author(s): Nam Nguyen Chemistry & Biochemistry Kristof Pota Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry
Location: Zoom Room 5, 01:10 PM

The mis-regulation of reactive oxygen species (ROS) and transition metals contribute to the onset of Alzheimer’s Disease (AD). A tetra-aza macrocyclic pyridinophane with an indole moiety, (Ind)PyN3, was evaluated on its radical scavenging reactivity and ability to chelate and stabilize the copper (II) oxidation state; these evaluations contribute to the overall therapeutic efficacy of the ligand in treating AD. Compared to a congener replacing the indole moiety with a hydroxyl moiety, (OH)PyN3, (Ind)PyN3 displayed comparable radical scavenging reactivity to (OH)PyN3. The fluorometric CCA assay revealed that (Ind)PyN3 was able to the stabilize the copper (II) oxidation state and prevent it from generating ROS via redox cycling at both 1 and ½ equivalents, albeit (OH)PyN3 was more effective at copper (II) oxidation state stabilization than (Ind)PyN3 at half molar equivalence. Our results demonstrate that the addition of the indole moiety to a tetra-aza macrocyclic pyridinophane does not disrupt radical scavenging reactivity by the indole moiety nor the ability of the pyridinophane to stabilize transition metal ions, warranting future exploration of the indole moiety in therapeutic design for AD.

View Presentation

CHEM2021POTA8861 CHEM

Manganese Complex of a Rigidified 15-Membered Macrocycle: A Comprehensive Study

Type: Graduate
Author(s): Kristof Pota Chemistry & Biochemistry David Freire Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry
Location: Zoom Room 6, 02:15 PM

Owing to the increasing importance of manganese(II) complexes in the field of magnetic resonance imaging (MRI), large efforts have been devoted to find an appropriate ligand for Mn(II) ion encapsulation by providing balance between the seemingly contradictory requirements (i.e., thermodynamic stability and kinetic inertness vs low ligand denticity enabling water molecule(s) to be coordinated in its metal center). Among these ligands, a large number of pyridine or pyridol based open-chain and macrocyclic chelators have been investigated so far. As a next step in the development of these chelators, 15-pyN3O2Ph and its transition metal complexes were synthesized and characterized using established methods. The 15-pyN3O2Ph ligand incorporates both pyridine and ortho-phenylene units to decrease ligand flexibility. The thermodynamic properties, protonation and stability constants, were determined using pH-potentiometry; the solid-state structures of two protonation states of the free ligand and its manganese complex were obtained by single crystal X-ray diffractometry. The results show a seven-coordinate metal center with two water molecules in the first coordination sphere. The longitudinal relaxivity of [Mn(15-pyN3O2Ph)]2+ was found to be 5.16 mM−1 s−1 at 0.49 T (298 K). Furthermore, the r2p value of 11.72 mM−1 s−1 (0.49 T), which is doubled at 1.41 T field, suggests that design of this Mn(II) complex does achieve some characteristics required for contrast imaging. In addition, 17O NMR measurements were performed in order to access the microscopic parameters governing this key feature (e.g., water exchange rate). Finally, manganese complexes of ligands with analogous polyaza macrocyclic scaffold have been investigated as low molecular weight Mn(CAT) mimics. Here, we report the H2O2 disproportionation study of [Mn(15-pyN3O2Ph)]2+ to demonstrate the versatility of this platform as well.

View Presentation

CHEM2021RAMOS32323 CHEM

Using parameters from a density functional theory model to add dispersion corrections to model noncovalent interactions

Type: Undergraduate
Author(s): Chloe Ramos Chemistry & Biochemistry
Advisor(s): Benjamin Janesko Chemistry & Biochemistry
Location: Zoom Room 1, 01:50 PM

Dispersion interactions also known as van der Waals interactions are essential for everything from nanomaterials to organic chemistry to biological chemistry. Modeling that chemistry requires modeling van der Waals interactions. Approximations that start from “freshman chemistry” molecular orbital (MO) theory do not account for dispersion. For example, helium-helium interactions are unbound in molecular orbital theory as two electrons are placed in antibonding orbital, but in reality, the interactions are weakly bound and can form a liquid. We have developed a density functional theory method embodying MO theory and corrections. Dispersion corrections can be added to noncovalent interactions in order to model them by using a standard model with different parameters. By fitting these parameters, the accurate known bond energies of real noncovalent complexes can be reproduced.

View Presentation

CHEM2021RICHTER62964 CHEM

Fluorescent Bivalent Antibody Mimics Against Epidermal Growth Factor Receptor

Type: Undergraduate
Author(s): Mitchel Richter Chemistry & Biochemistry Andrea Guedez Pena Chemistry & Biochemistry
Advisor(s): Youngha Ryu Chemistry & Biochemistry
Location: Zoom Room 4, 03:11 PM

This project is aimed to develop triazine-based fluorescent bivalent antibody mimics against the epidermal growth factor receptor (EGFR), a protein disease marker for cancer. A synthetic gene for the anti-EGFR Z-domain was constructed by overlapping extension PCR and inserted into the pET-Z plasmid to produce pET-Z anti-EGFR. The anti-EGFR Z-domain variant was expressed as a C-terminal His-tag fusion in BL21(DE3) E. coli cells transformed with the pET-Z anti-EGFR plasmid and purified by immobilized metal ion affinity chromatography. A dansyl fluorophore was attached to the first position of a triazine core that has three positions available for modification. To the second available position of the dansyl-triazine conjugate, an anti-EGFR Z-domain molecule was selectively attached to generate a monomeric conjugate. Another anti-EGFR Z-domain molecule will be attached to the remaining position of the triazine core to produce a dimeric conjugate. We will test the fluorescent monomeric and dimeric anti-EGFR Z-domain conjugates for binding to the EGFR by a standard ELISA method and isothermal titration calorimetry.

View Presentation

CHEM2021SABOURIN22557 CHEM

Preparation of Clickable Monomers Compatible with Automated PNA Synthesis

Type: Graduate
Author(s): Axel Sabourin Chemistry & Biochemistry Grace Newell Chemistry & Biochemistry
Advisor(s): Jean-Luc Montchamp Chemistry & Biochemistry
Location: Zoom Room 6, 01:18 PM

Fmoc-protected and propargyl-containing thymine and Cbz-protected cytosine monomers were synthesized for possible use in the pre- or post-functionalization of PNA oligomers via click chemistry. The monomers should be suitable for incorporation in normal automated solid phase PNA synthesis. The synthesis is suitable for the preparation of gram-quantities of monomers and uses reductive amination as the key step.

View Presentation

CHEM2021SADAGOPAN61836 CHEM

Enhancing the therapeutic potential of heterocyclic ligands for treating Alzheimer's disease

Type: Undergraduate
Author(s): Nishanth Sadagopan Chemistry & Biochemistry Sugam Kharel Chemistry & Biochemistry Kristof Pota Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry
Location: Zoom Room 1, 01:58 PM

Alzheimer's disease is a neurodegenerative disorder that is characterized by amyloid-beta plaques, neurofibrillary tangles, and unregulated reactive oxygen species. The production of reactive oxygen species in the brain is exacerbated by an excess of free-metal ions in nervous tissue. Our team and others have shown a library of tetra-azamacrocycles to have the ability to scavenge free-metal ions and quench reactive oxygen species. These macrocyclic ligands have, thus, been considered as potential therapeutic agents for combatting Alzheimer’s disease. The ability of a neuro-active pharmaceutical to cross the blood-brain barrier is crucial to its pharmacological success and has proven to be a significant challenge to date in moving molecules from the bench to clinical treatment paradigms. The aim of this work is to enhance the pharmacological potential of these macrocyclic ligands. To accomplish this, computational analyses were performed on two tetra-azamacrocycles to predict their baseline blood-brain barrier permeability. The structures of these macrocycles were then modified with various moieties and analyzed via the same computational methods to predict their blood-brain barrier permeability potential. One target modification this project is focused on is the attachment of omega-3 fatty acids to these tetra-azamacrocycles. Omega-3 fatty acids have been shown to have beneficial anti-inflammatory properties in vivo and have the ability to assist in transporting molecules across the blood-brain barrier. Thus, the inclusion of these moieties to the structure of the Green Group ligands are attractive in regard to enhancing their pharmacological potential. To accomplish this attachment, the synthetic approach of one of the Green Group’s flagship tetra-azamacrocycles, OHPy-N3, had to be completely reimagined. New synthetic approaches and protection strategies were employed to achieve a suitable intermediate molecule primed for the addition omega-3 fatty acids. These novel synthetic methods and subsequent results are discussed in this work herein.

View Presentation

CHEM2021SEGURA24832 CHEM

Synthesizing a Vaccine for the Treatment of Addiction to the Fentanyl Opioid

Type: Undergraduate
Author(s): Carolina Segura Biology Karen Winters Biology
Advisor(s): Jean-Luc Montchamp Chemistry & Biochemistry
Location: Zoom Room 1, 01:02 PM

The objective of this project is to make a vaccine that will negate the effects of the powerful opioid fentanyl in the long term. Fentanyl is a strong synthetic opioid that is 50 to 100 times more potent than morphine. According to the CDC, there were over 70,000 deaths due to street drug overdoses, which has increased in the last ten years. 40 % of these deaths are related to fentanyl overdoses, therefore it is imperative that approaches are developed to combat this alarming increase in deaths. The vaccine against fentanyl will be synthesized out of molecules that will take advantage of fentanyl’s amide functional group to be hydrolyzed into safe byproducts. Any patient that is administered with the vaccine, will not feel the effects of the opioid because the immune system will hydrolyze the drug as soon as it enters. This project will exploit the properties of both catalytic antibodies (CAbs) and transition state analogs. If the molecule resembles the transition-state of fentanyl hydrolysis, then the antibodies can cleave the fentanyl in a fast and efficient manner due to their catalytic properties. Therefore, after immunization, a person who is addicted to fentanyl would no longer feel the effects of the opioid because it will be degraded as soon as an immune response is triggered, creating a long-term possible solution to one factor of the “opioid crisis.”

View Presentation

CHEM2021SHERMAN26246 CHEM

Practical Synthesis of Alkenyl Phosphorus Compunds

Type: Undergraduate
Author(s): Emily Sherman Chemistry & Biochemistry
Advisor(s): Jean-Luc Montchamp Chemistry & Biochemistry Benjamin Janesko Chemistry & Biochemistry Anne VanBeber Nutritional Sciences
Location: Zoom Room 2, 03:27 PM

Alkenyl phosphorus compounds appear in multiple industrial products, from flame retardants to fungicides. Although several methods are available to synthesize these compounds, many require expensive catalysts, inaccessible starting materials, or multi-steps sequences. In response to these issues, this project sought to develop an efficient, two-step method to synthesize alkenyl phosphorus compounds from simple ketones. We compare acid and base catalysts and find both are effective in the first reaction step; furthermore, a one-pot reaction provides comparable yields to the reactions conducted with a purified intermediate. These findings lay the foundation for the exploration of more complex substrates, including those utilized in industrial applications.

View Presentation

CHEM2021VEALS38707 CHEM

Synthesis and Characterization of an Iodo-substituted Macrocyclic Complex: Comparison of Pyridine Modification

Type: Undergraduate
Author(s): Diandria Veals Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry
Location: Zoom Room 1, 03:03 PM

Pyridine macrocycles have useful applications due to their ability to complex with metals. A library of substituted pyridine macrocycles exists along with how modifications at Carbon 4 impact compound reactivity. Despite literature about similar pyridine macrocycle structures, little is known about how an iodo-substituted pyridine macrocycle will alter the properties of the compound when complexed to Copper. To understand the fundamental characteristics of an Iodo-substituted pyridine macrocycle, the ligand is synthesized followed by electronic environment analysis via 1H NMR. Ultraviolet-Visible Spectroscopy is used to verify ligand complexation with Copper (II) metal followed by X-ray diffraction to determine metal binding nature of the complex. Cyclic Voltammetry analysis is used to support the theory that the iodo functional group behaves as an electron withdrawing group. This compound serves as a comparison to explain the results of the Chloro-substituted pyridine macrocycle as well as a gateway molecule for the synthesis of new pyridine macrocycles.

View Presentation

COSC2021AMOROS30328 COSC

SOM Volunteering System

Type: Undergraduate
Author(s): Maria Amoros Computer Science Riley Durbin Computer Science Peyton Freeman Computer Science Lydia Pape Computer Science Jeshua Suarez-Lugo Computer Science Emerson Wolf Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Zoom Room 6, 03:19 PM

The TCU and UNTHSC School of Medicine requires its students to participate in service learning with various non-profit partner organizations in the community. Our team's goal is to make the volunteer sign-up process easier and more convenient for med students, to automate the tracking of students' hours, and to ease the burden on faculty in charge of managing the entire process. We aim to accomplish these goals with a web application that will streamline the volunteer scheduling and hour-tracking process for students and faculty.

View Presentation

COSC2021MONCRIEF55602 COSC

ReadySet Go: A Web Application for Go AI Research and Play

Type: Undergraduate
Author(s): Ryan Moncrief Computer Science Christian Arciniega Computer Science Ryan Clements Computer Science Derek Isensee Computer Science Kien Nguyen Computer Science
Advisor(s): Krishna Kadiyala Computer Science
Location: Zoom Room 3, 01:58 PM

The TCU Computer Science Department has launched an AlphaGo research project. Currently, it can only be used by those directly involved with the project, and only at certain computers on campus. In addition, the interface for conducting research is difficult to use. Our goal is to make this project more widely accessible to students and faculty alike, whether they wish to help in research, or simply want to learn to play Go. We have developed a web application for the project that allows users to play against various Go AI agents, as well as allowing researchers to train new AI. In addition, our site allows various admin functions to control and edit users and AI agents alike.

View Presentation

COSC2021NGUYEN35866 COSC

Exposing AlphaGo(Zero)’s Weaknesses

Type: Undergraduate
Author(s): Khiem Nguyen Computer Science Kien Nguyen Computer Science
Advisor(s): Liran Ma Computer Science Ze-Li Dou Mathematics
Location: Zoom Room 2, 02:15 PM

This is a brief report on a comprehensive assessment of AlphaZero-type algorithms from the viewpoint of optimal play. This study does not join an already crowded field in seeking to enhance the efficiency of these algorithms, but sets sights on more conceptual questions and more quantitatively precise results. In particular, we show that the AlphaZero-type algorithms tend to behave more conservatively when winning and more aggressively when losing. We illustrate our results with a specific example on the 7x7 board.

View Presentation

COSC2021NGUYEN46950 COSC

Measuring the Strength of AlphaGo(Zero)

Type: Undergraduate
Author(s): Kien Nguyen Computer Science Matthew Bolding Computer Science Khiem Nguyen Computer Science
Advisor(s): Liran Ma Computer Science Ze-Li Dou Mathematics
Location: Zoom Room 1, 02:55 PM

A common way to evaluate the performance of players in two-player games is to have them play against other players. If the player wins more games than other players, then it is said to be more capable; in other words, the strength of a player is measured relatively. In this project, we seek a way to evaluate the performance of players in terms of absolute. In recent years, self-play reinforcement learning has given rise to capable game-playing agents in a number of complex domains such as Go and Chess. We perform an analysis of a self-play agent using scaled-down versions of Go on a generic platform to measure the strength of the agent via our developed methods.

View Presentation