Filter and Sort







PHYS2019FAIN18003 PHYS

Investigating viral transmission using an agent based model

Type: Graduate
Author(s): Baylor Fain Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 7

presentation location

A virus spreads through a body in two known ways: free cell transmission and cell to cell transmission. During free cell transmission, cells make viruses that diffuse throughout the body which may cause any cell that the virus touches to become infected. During cell to cell transmission, a virus spreads to a neighboring cell through an intercellular transfer. While previous research has investigated viruses based on free cell transmission, few models have incorporated cell to cell transmission leading to unclear results and bias to certain variables. This research accounts for both free cell and cell to cell transmission, using an agent-based framework. The model represents virus infection and spread in a two-dimensional layer of cells in order to generate total virus over time graphs for corresponding initial dose of virus.

View Presentation

PHYS2019HASAN44461 PHYS

Optical Properties Alteration and Photo-Voltaic Applications of Nitrogen-Doped Graphene Quantum Dots

Type: Graduate
Author(s): Md Tanvir Hasan Physics & Astronomy Roberto Gonzalez-Rodriguez Physics & Astronomy Conor Ryan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 2

presentation location

In this work, a simple/scalable microwave-facilitated hydrothermal route is used to produce nitrogen self-doped graphene quantum dots (NGQDs) from a sole glucosamine precursor. These NGQDs with average sizes of ~6nm show bright/stable fluorescence both in the visible and near-IR. The structural and optical properties of as-prepared NGQDs are further altered to provide control for optoelectronic applications by using ozone and thermal treatment. Thermal processing serves as controllable avenues to decrease GQD emission via anticipated reduction processes. Oxidative ozone treatment results in the decrease of GQD average size down to 5.23 nm and a more disordered structure due to the introduction of the new functional groups. Structural and optical characterization was performed utilizing TEM, AFM, SEM microscopy and FTIR, EDX, Raman, fluorescence, absorbance spectroscopy. FTIR, EDX and Raman data suggest that this processing introduces oxygen-containing functional groups, enhancing the atomic percentage of oxygen and increasing ID/IG ratio. Ozone treatment shows enhancement of visible emission which is observed from 0 to 16 min ozone processing with following over oxidation-induced defect-related quenching. On the other hand, a progressive increase in defect-related NIR emission is observed up to 45 min. Such alteration of optoelectronic properties enhances NGQD performance in photovoltaic devices.

Untreated NGQDs (Un-NGQDs) and ozone-treated NGQDs (Oz-NGQDs) are utilized as a photoactive layer to fabricate a variety of solar cells. Although devices with untreated NGQDs show performances similar to existing reports, Oz-NGQDs exhibit significant improvement (~six fold) with maximum PCE of 2.64%, an open circuit voltage of ~0.83V, a short circuit current density of 4.8 mA/cm^2, and an excellent fill factor of ~86.4%. This enhancement can be potentially attributed to the increased/broadened visible absorption feature in device state due to the efficient charge transfer between the hole-blocking layer of TiO2 and Oz-NGQD having enhanced concentration of functional groups. This work suggests ozone treatment as an easy and powerful technique to alter the optoelectronic properties of versatile and scalably produced NGQDs which can be successfully utilized as an eco-friendly photoactive layer to boost the photovoltaic performance of solar cells.

(Presentation is private)

PHYS2019HUEYYOU48564 PHYS

Exploring a system of coupled quartic oscillators with coupled cluster methods

Type: Graduate
Author(s): Carson Huey-You Physics & Astronomy
Advisor(s): Magnus Rittby Physics & Astronomy
Location: Session: 1; Basement; Table Number: 7

presentation location

Quantum mechanical oscillations of a many-body system about a local potential minimum can in a first approximation be modeled by a set of harmonic oscillators about a local potential minimum. In more sophisticated models one also has to consider anharmonic effects.
Here we present the first steps towards a systematic solution of ground and excited state energies for a set of coupled quartic oscillators using coupled cluster techniques. We present the general approach of the equation of motion coupled cluster (EOM-CC) method. We give illustrative details of the diagrammatic approach to obtaining our operating equations as well as the resulting EOM-CC equations for a simple system of coupled harmonic oscillators perturbed by a quadratic perturbation. We point to the connection with Bogoliubov transformations and finally we illustrate the numerical behavior of the EOM-CC non-linear iterations and matrix diagonalization of our effective Hamiltonian obtained with our Python code.

View Presentation

PHYS2019LEE28437 PHYS

Investigating Modulation of Graphene Oxide Fluorescence via External Electric Fields

Type: Graduate
Author(s): Bong Han Lee Physics & Astronomy Fabian Grote Physics & Astronomy Thomas Paz Physics & Astronomy Conor Ryan Physics & Astronomy Alina Valimukhametova Physics & Astronomy
Advisor(s): Anton V. Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 5

presentation location

With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that unlike existing chemical approaches yield substantial alteration of GO structure. Such desired new technique is one that is electronically-controlled and lead to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modelling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/PVP films with up to 6% reversible decrease under 1.6 V/µm electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modelled on a single exciton level by utilizing WKB approximation for electron escape form the exciton potential well. In an aqueous suspension at low fields GO flakes exhibit electrophoretic migration indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.

View Presentation

PHYS2019MURPHY60207 PHYS

Understanding the Effect of Measurement Time on Drug Characterization

Type: Graduate
Author(s): Hope Murphy Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 1; Basement; Table Number: 1

presentation location

In order to determine correct dosage of chemotherapy drugs, the effect of the drug must be properly quantified. There are two important values that characterize the effect of the drug: ε_max is the maximum possible effect from a drug, and IC_50 is the drug concentration where the effect diminishes by half. We use mathematical models to estimate how the values depend on measurement time and model choice. Improper choice of growth model is problematic and can lead to differences in predictions of treatment outcomes for patients. This work intends to understand how choice of model and measurement time affects the relative drug effect and causes the differences in predictions for the most effective dose of anticancer drug for a patient. This work determines the correct doses before trying those in patients to get the most effective therapeutic treatment.

View Presentation

PHYS2019RAY53904 PHYS

Shooting for Star Cluster Chemical Abundances with The Cannon

Type: Graduate
Author(s): Amy Ray Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 1

presentation location

Star clusters are key chemical and age tracers of Milky Way evolution. The use of star clusters to provide significant constraints on galaxy evolution, however, has been limited due to discrepancies between different studies. This work seeks to add additional open clusters into an existing large, uniform chemical abundance system. We analyze spectra of giant stars in 31 open clusters and, using a machine learning method called The Cannon, determine iron abundances. This uniform analysis is compared with previous results, and we present new chemical abundances of 12 star clusters.

View Presentation

PHYS2019REEKS46081 PHYS

Does surface polarity of micro- and nano-scale ZnO particles contribute to antibacterial action?

Type: Graduate
Author(s): John Reeks Physics & Astronomy Tabitha Haun Physics & Astronomy Benite Ishimwe Environmental Sciences Bao Thach Engineering Jacob Tzoka Physics & Astronomy Kimon Vogt Engineering
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 4

presentation location

Antimicrobial action of micro- and nanoscale ZnO particles has been documented, but the fundamental physical mechanisms driving this action are still not identified . We hypothesize that one of the key mechanisms behind the antibacterial action of ZnO is rooted in interactions between ZnO surfaces and extracellular material. Crystalline structure of ZnO results in two distinct types of crystallographic surfaces: polar (charged) and non-polar (neutral). The excess charge and electronic states at the polar surfaces of micro- and nano-scale ZnO particles may affect interfacial phenomena with surrounding media. Therefore, it is feasible that the relative abundance of such polar surfaces could significantly influence their antibacterial action. In this study we use a hydrothermal growth method established in our lab to synthesize ZnO crystals with different controllable surface morphologies. We study the effects of relative abundance of polar surfaces on antibacterial action. These experiments performed in conjunction with optoelectronic studies of ZnO crystals yield information regarding the fundamental nature of their antibacterial action.

View Presentation

PHYS2019REEKS6818 PHYS

UV-driven stimulated hydrophilicity of hydrophobic polysulfone

Type: Graduate
Author(s): John Reeks Physics & Astronomy Tabitha Haun Physics & Astronomy Benite Ishimwe Environmental Sciences
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 4

presentation location

Polysulfone is a stable and strong semitransparent thermoplastic material that is applicable in many industries due to its resistance to low and high temperatures, as well as unique hydrophobic properties. Hydrophobic films are frequently used in waterproofing devices and to improve the efficiency of water vessels. It was recently discovered that polysulfone has a unique behavior as it changes from being hydrophobic to hydrophilic after exposure to a UV radiation. In order to elucidate the mechanisms behind this phenomenon we are performing surface photovoltage (SPV) studies on polysulfone thin films, which is done for the first time, to the best of our knowledge. Whereas SPV is sensitive to buried interfaces, SPV spectral features contain contributions not only from the polysulfone films, but from the silicon wafer and the silicon oxide layer beneath the polymer films. Thereby, to identify the signal germane to the polysulfone properly, we employ in our studies polysulfone films of varying and controllable thicknesses. To establish controllable methods for producing such films by spin coating, we use different concentrations of polysulfone in solutions with different spin rates. Film thickness is determined employing a thin film analyzer. From these thicknesses, trends are established relating film thickness to solution concentration and spin rate. SPV studies provide initial investigations into surface electronic transitions and mechanisms behind the hydrophobic ‘flipping’ of polysulfone.

View Presentation

PHYS2019SUN49284 PHYS

The environmental effect on star formation in low-mass galaxies.

Type: Graduate
Author(s): Jing Sun Physics & Astronomy Kat Barger Physics & Astronomy
Advisor(s): Kat Barger Physics & Astronomy
Location: Session: 2; Basement; Table Number: 8

presentation location

The interaction between low-mass galaxies are of critical importance for the growth and evolution of galaxies. The star formation can be enhanced during interactions between massive galaxies, but very few studies focus on the interaction between low-mass galaxies. In this work, we explored the current star-formation surface density in both isolated and interacting galaxies and look for enhanced star formation during the interactions. A galaxy will be considered as a galaxy pair candidate if the physical separation between it and its closest low-mass galaxies is smaller than 5000 light years, otherwise it will be put into the isolate galaxy sample. This sample intentionally excludes galaxies with a massive galaxy neighbor nearby as massive neighbors can harass low-mass companion galaxies and can cause them to become quenched. This project is the first attempt to systematically study how the internal star-formation activities of low-mass galaxies are influenced by outer environment.

View Presentation

PHYS2019WEERASOORIYA61969 PHYS

Star Wells: Rise of Satellites

Type: Graduate
Author(s): Sachithra Weerasooriya Physics & Astronomy
Advisor(s): Mia Bovill Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 10

presentation location

Large galaxies are made up of smaller satellite galaxies. This makes these satellite galaxies crucial to understanding how stars form. Shallow gravity wells make them extremely sensitive to internal and external disturbances. Therefore, they are excellent laboratories to explore stellar physics. We use multi-body simulations of a Milky Way-like galaxy to explore the stellar properties of satellite galaxies surrounding a possible Large Magellanic Cloud (LMC). LMC is the largest satellite galaxy of the Milky Way. We compare the resulting properties such as chemical composition, light, radial distribution to observations from McConnachie et al. 2012.

View Presentation