Filter and Sort







BIOL2017MARX44524 BIOL

Are Rain Frogs Bioindicators of Neotropical Rainforest?

Type: Undergraduate
Author(s): Murphy Marx Biology Morgan Macaulay Biology
Advisor(s): Amanda Hale Biology

Neotropical rain frogs serve as an indicator of habitat and ecological disruption in tropical rainforests through species-specific response to environmental stimuli. These responses are reflected in preference of habitat, such as primary or secondary forest, which may provide insights into the health and stability of not only Neotropical rain frogs and amphibians, but also of the surrounding ecosystem. We studied the diversity and abundance of rain frogs at the El Jamaical Field Station in Costa Rica, located in a transition zone between tropical rainforest and premontane rainforest, by overturning leaf litter along previously established trails that passed through both forest types, photographing found individuals, and recording discovery locations on a map. Focusing our study on the primary and secondary forests, we predicted that the diversity and abundance of rain frogs would be greater in the primary forest than in the secondary due to differences in diversity of trees and flora, humidity, temperature, and light levels. Data analysis will include species identification, proximity to dry streams, and comparison between primary and secondary forest.

View Presentation

BIOL2017NYSTROM19457 BIOL

Cause for Concern: Biological implications of heavy metal contamination in Kazakhstan’s Syr Darya river.

Type: Undergraduate
Author(s): Gunnar Nystrom Biology
Advisor(s): Marlo Jeffries Biology

The Syr Darya, one of the largest rivers in southern Kazakhstan, is a major source of freshwater feeding the Aral Sea. In the 1950s, water was diverted from the Syr Darya to support agricultural production leading to the drying of the Aral Sea, which has been characterized as one of the worst environmental catastrophes in modern day history. Mismanagement of these diverted waters has paved the way for potential surface water contamination in the Aral Sea Basin. While efforts to revive the Aral Sea are underway, few investigations have sought to assess the impacts of potential heavy metal contamination in the Syr Darya Watershed. As such, the goal of this study was to assess the presence and biological effects of heavy metal contaminants in the Syr Darya. This was accomplished by collecting water and sediment samples from five sites and roach (Rutilus rutilus) samples from three sites along the Syr Darya. Water, sediment, and roach muscle tissue samples were analyzed for a suite of contaminants, while roach liver, brain, gonad, and gill tissues were analyzed for the expression of genes considered to be biomarkers of heavy metal exposures (e.g., metallothionein and superoxide dismutase). Water and fish muscle tissue analysis revealed the presence of multiple heavy metals above local regulatory limits. Roach fish from two of the three sites experienced alterations in the expression of genes considered biomarkers of contaminant exposure suggesting that chemical loads at some of the sites in the Syr Darya were sufficient to induce biological effects. Data collected as part of this study will be utilized to complete an ecological risk assessment of the Syr Darya River basin.

View Presentation

BIOL2017OCONNOR46027 BIOL

Inflammation Induced Antibodies in a Murine Model of Alzheimer’s Disease

Type: Undergraduate
Author(s): Michaela O'Connor Biology Haley Moore Biology Kelsey Paulhus Biology Morgan Thompson Biology
Advisor(s): Michael Chumley Biology Gary Boehm Psychology

Alzheimer’s disease is a neurodegenerative disorder characterized by the presence of amyloid beta (Aβ) plaques. This pathology results in neuronal dysfunction and eventual cell death. Aβ plaques come from the buildup of beta-amyloid protein which clump together and block cell-to-cell signaling at synapses. To stimulate Aβ production, our lab uses an inflammation model utilizing lipopolysaccharide (LPS) injections. When mice are given intraperitoneal LPS injections over the course of one week they show a significant increase of Aβ in the brain. When a second course of LPS is administered following a two-week recovery period, Aβ levels return to baseline levels. The initial exposure to LPS protects the mouse from a second exposure, preventing further increase in the Aβ. One likely explanation is that the initial exposure primes the immune system, enabling the mouse to quickly initiate an antibody response upon subsequent exposure to LPS. The objective of the present study was to investigate the antibodies produced after the second course of LPS in 5xFAD mice. Plasma antibody levels were measured, and co-localization of antibodies around hippocampal Aβ plaques was investigated. We found that mice who received a second course of LPS injections had a significantly higher amount of IgG co-localized around plaques compared to non-treated control animals. This correlated with higher levels of IgG in the plasma. This data suggests that LPS exacerbates the antibody response in 5xFAD mice, and that these antibodies may specifically target Aβ.

View Presentation

BIOL2017OLIVAS5117 BIOL

Identifying Molecular Biomarkers of Cardiovascular and Neurological Development in Fathead Minnows: Ontogenetic Expression Profiles

Type: Undergraduate
Author(s): Alexis Olivas Biology Marlo Jeffries Biology Kate Phillips Biology
Advisor(s): Marlo Jeffries Biology

Changes in early physiological development due to chemical effluent exposure can be determined by measuring the levels of gene expression. Genes involved in cardiovascular and neurological development, as well as growth, serve as sensitive endpoints in toxicity tests involving the use of larvae. The purpose of this research was to determine when during development the level of gene expression was high enough for contaminant-induced decreases in expression to be detected. A suite of genes involved in growth, cardiovascular and neurological development was examined in embryos and larvae from 0 to 11 days post hatch. This information was used to determine time points at which selected genes were most highly expressed. For the growth-related genes, expression levels of growth hormone (gH) were highest at Days 4-7 and 11, levels of growth hormone receptor (gHR) at Days 1-7 and 11, and levels of insulin-like growth factor (igf1) at Days 4-11. For the thyroid hormone receptors, thyroid hormone receptor-α (TRα) showed highest expression levels at Days 3-11 and thyroid hormone receptor-β (TRβ) showed highest levels at Days 2-5 and 9. For the deiodinase enzymes, deiodinase-1 (Dio1) expression levels were highest at Days 2-3 and 7-11, levels of deiodinase-2 (Dio2) were highest at Days 7-11, and levels of deiodinase-3 (Dio3) were highest at Days 1-5. Vegfa, a gene involved in cardiovascular development, had levels of gene expression that were highest at days 7-11. HuC, a gene involved in neurological development, had the highest level of gene expression at days 7-11. When the level of expression of these genes is highest is when they have the greatest potential to be used in toxicity tests to measure alterations in expression.

(Presentation is private)

BIOL2017ORTEGARODRIGUEZ29751 BIOL

Mercury contamination of eight taxa of shoreline spiders and possible risk to arachnivorous songbirds

Type: Graduate
Author(s): Celeste Ortega-Rodriguez Biology MacGregor Hall Biology James Kennedy Biology Kyle Lauck Biology Kirkland Polk Biology Edward Williams Biology
Advisor(s): Matt Chumchal Biology Ray Drenner Biology

Mercury (Hg) is a hazardous contaminant that can be transferred from aquatic to terrestrial environments by emerging aquatic insects. Terrestrial predators, such as spiders, that live along shorelines of water bodies may consume emerging aquatic insects and become contaminated with Hg. Mercury-contaminated spiders may pose a risk to arachnivorous songbirds. The degree to which most families of spiders are contaminated with Hg and the risk they pose to songbirds is not well understood. The objectives of this study were to determine 1) Hg concentrations in seven families of shoreline spiders, 2) if each family was connected to the aquatic food web via the consumption of emergent insects and 3) determine the risk these spiders pose to arachnivorous birds. We collected representatives from seven families of spiders along with a variety of aquatic and terrestrial plant, invertebrate, and fish samples from 10 ponds located in north Texas, USA. We used methylmercury (MeHg) concentrations in combination with stable isotopes of nitrogen (δ15N) to determine if each family of shoreline spider was connected to the aquatic food web. All spider taxa in the present study were contaminated with Hg and connected to the aquatic food chain. We calculated wildlife values for various songbirds to determine health risks that Hg-contaminated spiders may pose to songbirds. Spider based wildlife values revealed that six of the seven families of shoreline spiders examined had concentrations of MeHg high enough that they may pose a risk to arachnivorous songbirds that forage for spiders along shorelines of ponds.

(Presentation is private)

BIOL2017REID49164 BIOL

Testing the specificity and cytotoxicity of biotin-ferrocene derivatives on cancer cells

Type: Undergraduate
Author(s): Eric Reid Biology
Advisor(s): Giridhar Akkaraju Biology

Cancer is the second-leading cause of death in the US. Cancer cells are characterized by loss of regulation of the cell cycle that results in uncontrolled proliferation. To drive this high rate of cellular division, cancer cells have mutated to increase uptake of important nutrients including glucose and vitamins by increasing the number of glucose receptors and vitamin transporters, including biotin receptor, on their surface. Due to this difference in expression of biotin receptor between cancer and normal cells, research focusing on the use of biotin-conjugated molecules has gained attention as a method for anticancer drug delivery.
Another characteristic unique to certain cancer cells is that they exhibit dysregulation in normal cellular redox balance, such that the cellular environment becomes more reducing. A more reducing environment favors the generation of reactive oxygen species (ROS). Many metal-based anticancer drugs have taken advantage of this feature of cancer cells in an attempt to increase the levels of ROS to the point that harmful oxidation reactions occur that lead to cell death. Specifically, the iron atom of ferrocene has been shown to lead to the generation of damaging ROS upon oxidation from Fe2+ to Fe3+.
A problem with current cancer treatment is that the chemotherapeutics often are not specific to cancer cells and can lead to negative side effects. As a result, anticancer drugs with high specificity and cytotoxicity are needed to improve treatments. This research project focuses on testing the cytotoxicity of a variety of biotin-ferrocene derivatives on cancer (HeLa) and non-cancer (293HEK) cell lines. HeLa cells are known to express high levels of biotin receptor and are predicted to have more reducing cellular environments; additionally, 293HEK cells express low levels of biotin receptor and are predicted to have less reducing environments. The tested compounds have three main features: a biotin moiety, a ferrocene core, and a variable linker covalently bound to the ferrocene moiety. We hypothesize that the biotin-containing compounds will enter HeLa cells more efficiently than 293HEK cells, allowing for the ferrocene moiety to reduce oxygen, leading to increased ROS generation and cell death.
Here, we demonstrate that ferrocene shows dose-dependent cytotoxicity specific to HeLa cells, while one of the compounds shows dose-dependent cytotoxicity specific to 293HEK cells. Interestingly, two of the compounds show dose-dependent cytotoxicity to both cell lines. These findings are particularly intriguing in that there appears to be a difference in specificity between some of the compounds. However, future studies are required to reveal how these differences in cytotoxicity are related to the differences in chemical moieties and by what mechanisms these compounds are acting to cause specific cytotoxicity.

View Presentation

BIOL2017ROGERS62924 BIOL

Prey preference in the carnivorous pitcher plant, Sarracenia alata

Type: Undergraduate
Author(s): Lauren Rogers Biology Caleb Smack Biology
Advisor(s): John Horner Biology

Most plants acquire mineral nutrients from the soil. However, in nutrient-poor environments, some plants have evolved carnivorous traits that allow them to obtain nutrients by capturing and digesting insects. For example, the carnivorous pitcher plant Sarracenia alata uses passive pitfall traps to capture their insect prey. Although studies have examined prey composition for S. alata, few have included a comparison to the insects available in the environment. The purpose of this study was to compare prey capture of S. alata pitchers with the available insects to determine whether this species is selective in prey capture. The available insects were sampled using artificial sticky traps in the vicinity of the pitchers. The insects in the study were identified first to the level of order and then further identified to “morphospecies” as a means of examining preference on a finer scale. The results show that the pitchers captured only a subset of the available insects. The average number of orders captured by each pitcher (1.8 ± 1.0 SD) was lower than that captured by artificial traps (2.8 ± 0.5). Likewise, the average number of morphospecies captured by the pitchers (4.5 ± 4.8) was lower than that captured by the artificial traps (6.8 ± 3.5). These results support the hypothesis that S. alata is selective in its prey capture, but further studies are needed with different methods of measuring the available insects in order to avoid potential bias.

View Presentation

BIOL2017ROUSH11987 BIOL

Pilot study on the transport and effect of hormonally-active compounds in Texas watersheds

Type: Graduate
Author(s): Kyle Roush Biology
Advisor(s): Marlo Jeffries Biology

Globally, there is demand for increased meat production. Texas, a leader in cattle production in the United States, has met this demand utilizing confined animal feeding operations (CAFOs) containing hundreds to thousands of cattle. To increase production efficiency, cattle receive growth-promoting hormone treatments to enhance growth and increase cattle mass. These hormonally-active compounds (HACs) have been found in cattle waste, feedlot runoff, and surface waters. The ultimate goal of this project was to identify watershed characteristics that promote the transport of cattle-associated HACs to surface waters. Therefore, the objectives of this pilot study were to: 1) identify and define a study area for evaluating HACs in Texas watersheds and 2) begin preliminary assessments of HAC activity in watersheds downstream of cattle feedlots. A suitable study site was identified using satellite imagery, elevation data and the ArcGIS hydrology tool pack. Sample sites were selected within this area based on geographical features and position to CAFOs. Caged fish studies, followed by analysis of estrogen-responsive gene expression, were utilized to assess the presence and activity of HACs. Though no statistically significant alterations in estrogen-responsive gene expression metrics were observed, females from three of the four sites downstream of CAFOs experienced 2.9 to 3.7-fold and 1.9 to 5.3-fold decreases in the expression of estrogen receptor alpha and vitellogenin, respectively. This could have larger implications as previous research by Miller et al. 2007 forecasted that a 50% reduction in vitellogenin plasma concentration could result in a 41.8% decrease in average population size after one year.

View Presentation

BIOL2017SHOWALTER44690 BIOL

Measuring Associations Between Polymorphisms in the GREB1L Gene and the Development of Different Migratory Phenotypes in Oncorhynchus mykiss

Type: Undergraduate
Author(s): Ben Showalter Biology
Advisor(s): Matthew Hale Biology

Rainbow trout, Oncorhynchus mykiss, exhibit two life-history strategies: resident rainbow trout and migratory steelhead trout. Previous research has shown that the migratory decision is highly heritable. Recently, interest has focused on the GREB1L gene as studies in several populations of rainbow trout have found alleles associated with migration. This project aimed to measure allelic associations between GREB1L and migratory life-history in rainbow trout from Sashin Creek, Alaska. Sequence data suggests that all individuals, regardless of migratory trajectory, had alleles associated with migration. These results confirm that there are population specific genetic effects that determine the migratory life-history of rainbow trout.

View Presentation

BIOL2017SILVA23354 BIOL

The Comparison of Herbivory Damage on Red and Green Leaves in a Neotropical Rainforest

Type: Undergraduate
Author(s): Kristen Silva Biology Amal Khan Biology
Advisor(s): Dean Williams Biology Amanda Hale Biology Michael Misamore Biology

A distinctive feature in many tropical trees is the presence of red young leaves which turn green with maturity. Some theories as to why the young leaves are red is because it could signal to herbivores that the young leaf is full of toxins, or that it is low in nutrients. During a spring break trip to the TCU Field Station in Costa Rica we tested the hypothesis that green leaves have more herbivory damage than red ones. Fifteen trees were randomly sampled in the secondary forest. All the leaves were counted on the selected trees and we recorded the total number of both red and green leaves and then how many leaves of each color had herbivore damage. We then analyzed the ratio of damaged red and green leaves to determine if red leaves are predated on less than green leaves. This will help us understand if this means that red leaves have a natural defense against herbivory.

View Presentation

BIOL2017UPTON46847 BIOL

DNA Barcoding Insect Species for Texas Horned Lizard Diet Analysis

Type: Undergraduate
Author(s): Kaitlyn Upton Biology
Advisor(s): Dean Williams Biology

The Texas horned lizard (Phrynosoma cornutum) is a threatened species in the state of Texas whose main dietary staple is believed to be the harvester ant (Pogonomyrmex spp.). In two South Texas towns horned lizards are consuming many ants and termites other than harvester ants and so we developed DNA barcoding methodology to help identify these taxa in the DNA extracted from horned lizard feces. We used a small portion of the mitochondrial cytochrome oxidase I gene to confirm morphological identifications and to identify ants and termites to the species level from horned lizard scat.

View Presentation

BIOL2017WEST17441 BIOL

To BEE or Not to BEE? – Species Diversity and Abundance in the Neotropics

Type: Undergraduate
Author(s): Julianna West Biology Bobby Boone Biology Troy Marshall Biology Julianna Martinez Biology
Advisor(s): Amanda Hale Biology

Euglossine, or Orchid bees, belong to a monophyletic clade of neotropical bees and are specialized pollinators for orchids in the neotropics. Orchid bees are used to study the effects of deforestation and pollination patterns because the males collect fragrances, and therefore by using scents, can be tracked and counted throughout a habitat. Because previous research has shown that scent preference and orchid bee diversity varies across different habitats, we wanted to compare the abundance and diversity of euglossine bees in a forest edge, a secondary forest, and a primary forest near San Ramón, Costa Rica. By placing different scents on filter papers, we counted and identified the number of bees attracted to each scent. We found a variation in scent preference and species diversity across the different forest types. At a forest edge, more bees were attracted to eugenol, while in the secondary forest, most bees preferred cineole. Methyl salicylate was the scent preferred in the primary forest. Scent preference also varied between different species and species diversity was different between the habitat types. While Eulaema meriana was common in both habitats, E. meriana was observed more frequently in the forest edge, while Euglossa imperialis was not seen in the forest edge and was more abundant in the secondary forest and the primary forest. These findings indicate that changes in habitat type and forest structure can impact orchid bee diversity, thus affecting the tropical ecosystem.

View Presentation

BIOL2017WILLIAMS24010 BIOL

The Effect of Hepatitis C Virus Non-Structural Protein NS5A on Antiviral Gene Expression

Type: Undergraduate
Author(s): Emily Williams Biology
Advisor(s): Giridhar Akkaraju Biology

Hepatitis C Virus (HCV) is a bloodborne pathogen that infects approximately 3 million people in the United States and 140 million people worldwide. Once infected, only 15-25% of patients are able to clear the virus from their systems without treatment, leaving 75-85% of affected individuals with a chronic, life-long infection. Chronic HCV is often asymptomatic until decades after infection, so many patients are unaware of the need for treatment until damage has already reached advanced stages. Long-term HCV infection can lead to several serious diseases, including chronic hepatitis, liver cirrhosis, and liver cancer. In the United States, chronic HCV infection is the leading cause for liver transplants. As a RNA virus, mutations in the HCV genome are relatively common. Currently, there are 6 genotypes and at least 50 subtypes of the virus, which can affect response both to pharmaceutical treatment and to the host innate immune response.
When HCV infects a cell, the cell fights the infection by turning on the expression of antiviral genes, such as interferon-beta (IFNb). Once IFNb is produced, it is secreted from the cell and in turn activates expression of interferon-stimulated genes (ISGs) in the same cell and surrounding cells, thereby triggering the host innate immune response. HCV produces proteins that are capable of blocking IFNb. Without IFNb, the host is unable to fight off the HCV infection, which allows the infection to become chronic. Our lab has shown that the HCV non-structural protein NS5A inhibits Sendai Virus (SV)-induced IFNb gene expression, and is also vital to viral replication.
This study focuses on two mutant forms of HCV NS5A. NS5A 10A is the K2040 mutant with a lysine deletion, and has been shown to result in increased levels of viral replication. NS5A H27 is the L2198S mutant with a lysine to serine substitution, and has been shown to result in decreased levels of viral replication. We hypothesize that the differences in levels of replication between the two mutants is due to differential inhibition of SV-induced IFNb gene expression. Cells expressing NS5A 10A should have lower levels of antiviral gene expression, while expression of NS5A H27 should lead to higher levels of antiviral gene expression. RT-PCR and q-RT-PCR was performed on HEK 293 cells in order to measure differences in gene expression of IFNb and ISGs MX1, OAS1, and TRIM14 in the presence or absence of Sendai Virus and NS5A. GAPDH was used as an endogenous control, as GAPDH levels are unaffected by viral infection. Cells were infected using Sendai Virus in order to trigger the IFNb antiviral pathway, and were transfected with the different mutant forms of NS5A.

View Presentation