Filter and Sort







PHYS2020REEKS8931 PHYS

Role of Surface Charge Dynamics in UV-Induced Hydrophilic Flipping of Polysulfone Thin Films

Type: Graduate
Author(s): John Reeks Physics & Astronomy Pavan Ahluwalia Physics & Astronomy Edward Bormashenko Physics & Astronomy Luc Le Physics & Astronomy Logan Simon Physics & Astronomy
Advisor(s): Yuri Strzhemechny Physics & Astronomy

Reportedly, hydrophobic surfaces of polysulfone (PSu) thin films become hydrophilic following exposure to UV radiation and it can affect PSu novel applications in microfluidics and biophysics. Fundamental mechanisms behind this effect remain unknown. To elucidate them, in our work we study surface charge transport employing surface photovoltage (SPV) on thin PSu polysulfone films spin-cast on silicon substrates. Since exposure of PSu even to an ambient UV light could affect the surface properties we ran SPV spectroscopy as well as SPV transient experiments on both as-received samples fabricated in darkness and UV-irradiated films of varying and controllable thicknesses. We report on the comparison of the SPV response in the as-deposited and UV-irradiated polysulfone samples.

View Presentation

PHYS2020SPOO57976 PHYS

​ Moving Towards a Better Kinematic Understanding of Our Milky Way ​ and its Stellar Populations

Type: Graduate
Author(s): Taylor Spoo Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy Kenneth Carrell Physics & Astronomy

Modern astronomical catalogs consist of up to billions of stars and measure various properties of these objects. There have been recent data releases from two of these surveys, GAIA which measures positions and distances, and APOGEE which measures radial velocities and stellar physical properties. By combining these datasets we have the full 6D phase space information for each star and can compute orbital characteristics and kinematics properties. APOGEE targeted specific stellar populations in our Milky Way and determined some of their physical properties. By cross matching with GAIA, we are able to fully describe the orbits of these populations and look for potential new members that have the same physical and kinematic properties but are not located in the immediate vicinity. We will present kinematic properties of the full cross matched dataset as well as information on the targeted stellar populations of the Milky Way.

View Presentation

PHYS2020VALIMUKHAMETOVA21642 PHYS

The Role of Graphene-Oxide in Stabilizing the Structure of the High-Temperature γ-Fe Phase

Type: Graduate
Author(s): Alina Valimukhametova Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy

Metal nanoparticles on a substrate have gained significant attention in recent years as novel systems for new generations of catalysts. Among other metals, iron attracts constant attention due to its low cost. Iron possess either the body-centered cubic (bcc) or the face-centered cubic (fcc) structure. Up to 917 °C, iron exists in its α-form (α-Fe) with the thermodynamically bcc lattice. At 917 °C, α-Fe transforms into the fcc lattice, and this allotrope is termed as γ-iron (γ-Fe) (austenite) with diamagnetic properties. According to the iron-carbon phase diagram, γ-Fe can incorporate up to 2.03% carbon. Lowering the temperature below 917 °C, carbon atoms diffuse out of the structure, and γ-Fe turns back to α-Fe. Up to now, γ-Fe could not be stabilized without such impurities as Mn, Cr, Ni at room temperature. We have obtained of iron nanoparticles with the face-centered cubic structure with diameters of up to 200 nm without impurities on the substrate of graphene oxide by thermal annealing in an inert gas. In our work we show that phases formation of iron depends on the temperature of annealing. At the annealing temperature from 300 ºC through 600 ºC only iron oxides are formed. We established the unexpected formation of the γ-phase already at 700°C by X-Ray diffraction and Mössbauer spectroscopy. These methods clearly identify the stability of the γ-phase at room temperature. The rather low transition temperature of α-Fe to γ-Fe already starting at 700 °C suggests that the mechanism for the transformation is different from that observed for bulk iron. The maximum γ-iron nanoparticles content on the substrate of graphene oxide was fixed at an annealing temperature of 950 °C.

View Presentation

PSYC2020BRADSHAW36444 PSYC

Financial Climate and Female Competition: Abundant Resources Ramp Up (Perceptions of) Women's Same-Sex Rivalry

Type: Graduate
Author(s): Hannah Bradshaw Psychology
Advisor(s): Sarah Hill Psychology

Past research suggests that conditions of scarcity increase the intensity of female same-sex competition. As such, cues to resource scarcity (vs. abundance) might lead women to perceive greater competitive tendencies in their same- (vs. opposite-) sex peers. This prediction was examined across three studies. Across all studies, the opposite pattern of results emerged. Study 1 demonstrated that women perceived higher levels of competitive interactions to occur amongst female (as compared to male and mixed-sex) target groups in environments where resources were abundant. In Study 2, women who perceived resources to be widely available evaluated same-sex others as more competitive than opposite-sex others. Finally, Study 3 provided evidence that women who are led to believe that resources are abundant reported expecting more competitive behavior from their same- (vs. opposite-) sex peers. These results suggest that resource abundance might foster greater competition among women, which has implications for women’s workplace and interpersonal relationships.

(Presentation is private)

PSYC2020DECKER21692 PSYC

The effects of trait extrapolation on attitudes toward kneeling during the national anthem

Type: Graduate
Author(s): kaleigh decker Psychology Charles Lord Psychology
Advisor(s): charles Lord Psychology

Previous research in our lab has found that extrapolating from known to unknown attributes about a group can cause individuals to adopt more extreme attitudes (i.e., become self-radicalized) toward the group. This has been found to be particularly true when people extrapolate from known to unknown attributes about people who agree and disagree with them about a social issue. The current experiment aimed to extend our understanding of these processes by determining whether extrapolating about people who agree and disagree with the extrapolator about a social issue would also report greater self-radicalization toward the social issue in general. Our results revealed that participants who initially opposed kneeling during the national anthem reported more negative attitudes toward kneeling during the national anthem after extrapolating than did participants in the control condition. Conversely, participants who initially favored kneeling during the anthem reported more positive post-manipulation attitudes after extrapolating than did participants in the control condition. These results extend the understanding by which attitudes can become more extreme in the absence of new information.

(Presentation is private)

PSYC2020OLIVEIRA41472 PSYC

An Evaluation of the Efficiency of Equivalence-Based Instruction

Type: Graduate
Author(s): Juliana Oliveira Psychology Anna Petursdottir Psychology
Advisor(s): Anna Petursdottir Psychology

Few studies have directly evaluated the assumption that equivalence-based instruction (EBI) establishes stimulus classes with greater efficiency than complete instruction (CI) of all possible stimulus relations within each class. The present study was identical to a previous study that failed to support this assumption, except that in the present study, mastery assessment was designed to favor the EBI condition over the CI condition. Forty-eight undergraduate students were assigned to one of four groups that received instruction on arbitrary stimulus relations. The EBI-CI group received EBI in Phase 1 and CI in Phase 2, and vice versa for the CI-EBI group. The EBI-EBI and CI-CI group received EBI and CI in both phases, respectively. In Phase 1, EBI-first groups received training on AB and BC relations and CI-first groups received training with all possible relations. After achieving mastery criterion, the ABC test included all possible trial types. In Phase 2, all groups received training to (a) add a fourth stimulus (D), and (b) add a fifth stimulus (E) to the class, using either EBI or CI. EBI took significantly fewer trials to complete than CI in both phases, but EBI in Phase 1 did not facilitate EBI in Phase 2. The results suggest the EBI arrangement used in this study may be more efficient than CI only because it permits faster learning assessment.

View Presentation

BIOL2019DAMM47183 BIOL

Hypoplastic Left Heart Syndrome

Type: Graduate
Author(s): Alexis Damm Biology
Advisor(s): Matt Chumchal Biology
Location: Session: 1; 2nd Floor; Table Number: 1

presentation location

Hypoplastic Left Heart Syndrome
Alexis Damm, PA-S2
A.T. Still University: Arizona School of Health Sciences

Background: Hypoplastic left heart syndrome is a congenital heart disease that involves malformation of the left side of the heart. This etiology requires intervention after birth, and it effects 1 in 4,344 babies born in the United States (CDC, n.d.).

Clinical Case: A 4 year old male diagnosed with hypoplastic left heart syndrome prior to birth. This case study will focus on the history, diagnosis and treatment of a complication of hypoplastic left heart syndrome. The unique factors that influence this patient’s course of treatment will be highlighted in order for the disease to be better understood.

Conclusion: This clinical scenario showcases the importance of understanding birth defects, associated complications, and highlights the positive outcomes of proper pediatric care.

Reference: Center for Disease Control and Prevention. (n.d.). Congenital Heart Defects - Facts about Hypoplastic Left Heart Syndrome | CDC. Retrieved from https://www.cdc.gov/ncbddd/heartdefects/hlhs.html

View Presentation

BIOL2019HANNAPPEL15062 BIOL

Effect of Body Size in Mercury Concentration in Shoreline Spiders

Type: Graduate
Author(s): Madeline Hannappel Biology Audrey Nolan Biology
Advisor(s): Matt Chumchal Biology Ray Drenner Biology
Location: Session: 1; 3rd Floor; Table Number: 9

presentation location

Recently, terrestrial shoreline spiders have been proposed as biosentinels of bioaccumulative aquatic contaminants such as mercury (Hg). Terrestrial shoreline spiders become contaminated with Hg when they feed on Hg-contaminated emergent aquatic insects. Although the effect of body size on contaminant bioaccumulation in other biosentinels, such as fish, has been thoroughly examined, there has been much less research on the effect of body size on concentrations of Hg in shoreline spiders. In this study, we determined the effect of body size on Hg concentrations in six taxa of shoreline spiders belonging to four families (orb-weavers, [Araneidae], long-jawed orb-weavers, [Tetragnathidae: Tetragnatha spp.], jumping spiders [Salticidae] and wolf spiders [Lycosidae: Pardosa spp., Rabidosa spp. and Schizocosa spp.]. We collected 683 spiders during the day using sweep nets or by hand at night on May 14, June 5, 11, 20 and July 6, 2018 from 14 human-made ponds at the Lyndon B. Johnson National Grasslands, Texas, USA. Average total Hg (THg) concentrations (mean ± SE) ranged from 63 ± 4.0 ng/g to 246 ± 20.1 in Araneidae and Schizocosa spp., respectively, and were significantly different between spider taxa. We measured tibia + patella length on the first leg as a proxy for body size and found that spider THg concentration increased significantly with spider body size for Araneidae, Tetragnatha spp., Salticidae and Pardosa spp. The percent of variation in THg concentration explained by spider body size ranged from 16% to 40% for Pardosa spp. and Salticidae, respectively. This study indicates that Hg accumulation in shoreline spiders differ between spider taxa and within taxa by spider size. We recommend that future studies of Hg in shoreline spiders include assessment of spider size.

(Presentation is private)

BIOL2019JOHNSON36911 BIOL

Connecting Developmental Thyroid Disruption to Impaired Reproductive Success in Fathead Minnows

Type: Graduate
Author(s): Abigail Johnson Biology
Advisor(s): Marlo Jeffries Biology Matt Hale Biology
Location: Session: 2; 1st Floor; Table Number: 6

presentation location

Thyroid disrupting compounds (TDCs) are known to interfere with normal thyroid hormone (TH) signaling. During embryonic and juvenile development, thyroid hormones modulate a variety of biological processes such as neurogenesis and the growth of the skeletal and muscular systems. Therefore, the majority of research on early life-stage (ELS) thyroid disruption has focused on its effects on growth and development. However, recent research has shown that ELS TDC exposure can also have adverse effects on reproduction later in life. Specifically, fathead minnows exposed to propylthiouracil (PTU), an anti-thyroid drug known to inhibit the synthesis of thyroxine (T4), during early development (from hatch through 42 days post hatch) experienced a 50% reduction in fecundity relative to controls. Interestingly, this statistically significant reduction in fecundity occurred when males, but not females, were subjected to ELS PTU exposures. After ruling out the possibility that ELS thyroid disruption altered testicular function, it was hypothesized that the observed reductions in fecundity resulted from changes in male reproductive behavior. To investigate the potential for and mechanism underlying PTU-induced alterations in male behavior, brains of PTU-exposed and control males were collected immediately after exposure for transcriptomic analysis. Of the genes that were found to be differentially expressed between the brains of PTU-exposed and control males, several were associated with axon guidance, behavior, and sex steroid signaling. Specifically, PTU-exposed males experienced significant reductions in the expression of serotonin receptor, fibronectin, estrogen receptor alpha, and aromatase. Given the known role of these genes in development and sexual differentiation of the male brain, these results provide evidence supporting the hypothesis that ELS chemically-induced hypothyroidism leads to altered neurogenesis and subsequent alterations in behavior. Overall, the results of this study may help link transcriptomic alterations in the brain to alterations in reproductive behavior, which has important population-level consequences.

(Presentation is private)

BIOL2019KRZYKWA27064 BIOL

Validating methods for the assessment of neurological function in larval fathead minnows

Type: Graduate
Author(s): Julie Krzykwa Biology Gabby Lamanteer Biology
Advisor(s): Marlo Jeffries Biology
Location: Session: 1; Basement; Table Number: 5

presentation location

Alterations in neurological development and/or vision have been noted after exposures to a variety of environmental contaminants, including heavy metals, pesticides, pharmaceuticals, and estrogens. Despite the growing interest in assessing the neurotoxicity of toxicants, routine toxicity testing methods do not currently include the assessment of endpoints capable of predicting adverse impacts on neurological development. A toxicity test featuring embryonic fathead minnows - the fish embryo toxicity (FET) test - was recently developed; however, it does not include neurological-related endpoints. Development of such endpoints would expand the utility of the FET test and allow for the assessment of neurological teratogens. Previous studies have identified embryonic eye size as a potential FET test endpoint, and though there is limited evidence suggesting that these alterations are indicative of altered neurological development, studies validating the link between eye size and organism fitness are needed. The overarching goal of this project is to investigate whether reduced embryonic eye size at the conclusion of the FET test is predicative of altered vision or neurological function in larval fathead minnows. But first, assays for assessing vision and neurological function in larval fathead minnows must be developed and/or validated. Therefore, the objective of the present study was to validate methods to assess vision/neurological function in larval fathead minnows. Three assays were developed: the optomotor response assay, a feeding assay, and the c-start assay. The ability of these assays to identify alterations in the neurological function of larval fathead minnows was assessed by exposing larvae to three doses of the known neurotoxicant chlorpyrifos for 5 or 12 d. These results will be utilized in future studies investigating whether reductions in embryonic eye size are predictive of sublethal adverse effects and can also be utilized by other researchers interested in assessing vision/neurological function in larval fathead minnows.

(Presentation is private)

BIOL2019MIRKIN43123 BIOL

Predation Release of Texas Horned Lizards (Phrynosoma cornutum) Living In Small Towns

Type: Graduate
Author(s): Stephen Mirkin Biology Mary Rachel Tucker Biology
Advisor(s): Dean Williams Biology
Location: Session: 1; Basement; Table Number: 1

presentation location

Texas horned lizards Phrynosoma cornutum are a threatened species in the state of Texas, due to population declines and extinctions, especially in the eastern part of their range. Texas horned lizards are still found in small towns in south Texas and can reach densities that are much higher (~50 lizards/ha) than in natural areas (~4-10 lizards/ha). We used models of Texas horned lizards to test whether predation levels might be lower in two south Texas towns than on a ranch that was located in south Texas. We constructed Texas horned lizard models from urethane foam, a material that is ideal for preserving marks (bites and pecks) left behind by predators. Models (n = 126) were left in the field for a period of 9 days in each location and marks left behind by predators were categorized accordingly. We conducted this experiment in June and again in August 2018. We found significantly less attempted predation events in the towns (n = 1 predation attempt) compared to the ranch (n = 60) and no differences between months. Anecdotal observations over the past 6 years also support a lack of many horned lizard predators in the towns. Our results suggest that Texas horned lizards may be under heavy predation pressure in natural environments and that lizards living in urban areas may be escaping some of this pressure leading to higher than normal lizard densities in some small Texas towns.

View Presentation

BIOL2019RHOADS18920 BIOL

Camouflage in Conservation: Background Color-Matching in the Texas Horned Lizard (Phrynosoma cornutum)

Type: Graduate
Author(s): Dustin Rhoads Biology Dean Williams Biology
Advisor(s): Dean Williams Biology Sarah Hill Psychology John Horner Biology Laura Luque Biology
Location: Session: 2; 3rd Floor; Table Number: 8

presentation location

Most of the literature on the basic ecology of Texas Horned Lizards cites "cryptic color pattern" as the first line of defense against predation in this taxon, and yet the degree to which horned lizards actually color-match their backgrounds has never been quantified. Texas zoos and state wildlife agencies are releasing captive-bred hatchlings and translocated adults to parts of their former range; however, the new populations are not self-sustaining, with the majority of releases lost to predation. Background color-matching has not been quantified for these reintroduction efforts but may be important to take into account when moving lizards into a new habitat where predation may be higher if they are not closely color-matched to the local soils. I quantify background color-matching in this taxon across its known range in the United States and in Mexico from in situ photos taken, as found, in the wild. I also present background color-matching variation and trends both within and between phenotypically and genetically diverse populations and ask whether lizards more closely match their local soil colors than soils from other areas. Finally, I suggest a method for zoos and wildlife agencies to score coloration in their captive populations of lizards, thus possibly enabling these institutions to objectively take into account color-matching a priori as an applied conservation strategy to potentially increase the survival of reintroduced Texas Horned Lizards.

View Presentation

BIOL2019SCHENK52240 BIOL

Comparative Disturbance Response Between Two Closely Related Avian Species

Type: Graduate
Author(s): Amber Schenk Biology
Advisor(s): Amanda Hale Biology Tamie Morgan Geological Sciences
Location: Session: 1; Basement; Table Number: 1

presentation location

Indigo Buntings (Passerina cyanea) and Painted Buntings (Passerina ciris) are closely related songbirds in the family Cardinalidae, found to co-exist in areas where ranges overlap. However, though both species share similarities in morphology, diet and preferred habitat characteristics, there is little quantitative data accumulated about the Painted Bunting and many aspects of its life history remain unclear. North American Breeding Bird Surveys have shown a significant decline in Painted Bunting population numbers across their ranges—a decline that has resulted in its designation of a Species of Special Concern by Partners in Flight. Proposed reasons for the decline include habitat destruction, sensitivity to disturbance and factors associated with decreased success in breeding. Within the Great Trinity Forest, the Indigo and Painted bunting’s breeding grounds overlap. The Great Trinity Forest is a large urban forest surrounded by the city limits of Dallas, TX containing a variety of disturbance factors characteristically associated with a highly urbanized area: poor habitat, invasive species, and increased noise and light. Sensitive species, such as the Painted Bunting, are typically found to avoid areas of disturbance. Data collected May-July 2018 shows presence/absence of both species within 140, 5 ha plots spanning the forest. Additional disturbance data was collected, including noise levels (db), invasive wild hog activity and percent impervious surface both within and surrounding each study site. Analysis of this data will aid in discovering how these species distribute themselves in relation to disturbance factors, urbanization and each other. Results will further serve to assist in future conservation efforts and increased life history knowledge of the painted bunting. It is predicted that disturbance factors within the Great Trinity Forest have a significant effect on Painted Bunting presence/absence while they have no significant effect on the Indigo Bunting.

(Presentation is private)

BIOL2019THALHUBER31251 BIOL

Methyl Mercury Contamination and Diet of Nestling Red-winged Blackbirds

Type: Graduate
Author(s): Thomas Thalhuber Biology Matthew Chumchal Biology Ray Drenner Biology William Zudock Biology
Advisor(s): Matthew Chumchal Biology Ray Drenner Biology
Location: Session: 2; 2nd Floor; Table Number: 7

presentation location

Red-winged blackbirds (Agelaius phoeniceus) are found throughout North America, often nesting in cattails in ponds and wetlands. Diet studies have revealed that adults can feed their nestlings both emergent aquatic insects like odonates and terrestrial insects like lepidopteran larvae. Because emergent aquatic insects can be contaminated with high amounts of methyl mercury (MeHg), it has been hypothesized that nestlings fed high amount of odonates would be contaminated with levels of MeHg that are hazardous to their health. There have been no of studies of MeHg contamination of nestling Red-winged blackbirds and their diet. The objective of our study was to measure the concentration of MeHg in blood of nestling Red-winged blackbird and to estimate the proportion of emergent aquatic insects and terrestrial insects in their diet. We conducted a study of Red-winged blackbird nestlings at 20 ponds at the Eagle Mountain Fish Hatchery, Fort Worth, Texas. The ponds are contaminated with Hg from the atmosphere. Previous studies at the Hatchery have demonstrated that emergent aquatic insects such as odonates have high concentrations of MeHg while terrestrial insects on the pond shorelines have low concentrations of MeHg. Red-winged blackbirds nested in cattails in the ponds from April 9 to July 30 2017. We collected 424 blood samples from 243 nestlings from 88 nests (1-2 samples from 1-4 nestlings per nest). We analyzed the blood for MeHg, and analyzed 202 of the blood samples (1-2 blood samples from 1 per nest) for nitrogen stable isotopes. Methyl mercury was detected in nestling blood suggesting that Red-winged blackbird nestlings were fed emergent aquatic insects. However, concentrations of MeHg in nestling blood were low (mean of 0.020 ug/g ww) and below the risk threshold. Methyl mercury concentrations and nitrogen stable isotope ratios for Red-winged blackbird nestlings suggest that terrestrial insects composed a high proportion of their diets. Our study suggests that Red-winged blackbird nestlings may not be at risk of MeHg contamination when terrestrial organisms dominate their diet.

(Presentation is private)

BIOL2019WINER58088 BIOL

Floral Herbivory in a Carnivorous Plant

Type: Graduate
Author(s): Zane Winer Biology
Advisor(s): John Horner Biology
Location: Session: 2; 3rd Floor; Table Number: 2

presentation location

Floral herbivory (florivory) can have direct effects on both female and male reproductive output. Damage to flower parts such as petals and anthers can also have potential indirect effects by altering floral attractiveness to pollinators. Because carnivorous plants live in nutrient-poor environments and have slow growth rates, these plants may be at increased risk of negative effects of florivory. However, there has been no study to investigate florivory in carnivorous plants. We conducted a two-year field study on an east-central Texas population of the carnivorous pitcher plant Sarracenia alata and its specialist herbivore Exyra semicrocea. Populations were surveyed for number of flowers attacked, and the mass of floral components was compared between attacked and unattacked flowers. In 2017, a mean of 65% of flowers were attacked at the end of the flowering season. Based on mass before dehiscence, the mass of anthers after florivory was 49.5% of unattacked anthers. There were no significant differences in the masses of other floral structures at the end of the season. In 2018, 38% of flowers surveyed were attacked. The mass of attacked ovaries was 47% that of unattacked, the mass of sepals and petals combined was 62.5% that of unattacked, and the stigma/style complex was 51.0% that of unattacked. The mass of attacked anthers before dehiscence was 18.7% that of unattacked anthers. This study shows that there was annual variation in both the proportion of flowers attacked in the population, and the extent of damage seen in floral structures. Future studies should examine the effects of florivory on pollen limitation, pollinator behavior, and recruitment in Sarracenia alata.

(Presentation is private)

CHEM2019BEERI11498 CHEM

Using Surface Polymer Networks to Connect DSPEC Components for a High Solar Energy Conversion Efficiency

Type: Graduate
Author(s): Debora Beeri Chemistry & Biochemistry
Advisor(s): Benjamin Sherman Chemistry & Biochemistry
Location: Session: 1; Basement; Table Number: 5

presentation location

It is extremely important in our age to look for alternative, more environmentally favorable energy sources. The Sun is a largely unused and widely available energy source to power human industry which can be utilized in different ways. Photovoltaic cells directly convert solar energy to electricity but only provide power when illuminated. Supplying solar-sourced energy during night hours and inclement weather requires conversion to another form, for instance into chemical fuel by means of water splitting into oxygen and hydrogen. This strategy, inspired by natural photosynthesis, is currently a promising and actively researched approach. However, achieving a high energy conversion efficiency, which is essential for industrial implantation of the method, remains a primary goal.
A Dye-Sensitized Photoelectrochemical Solar Cell (DSPEC) is specifically designed for using solar energy to generate hydrogen from water. We are pursuing the formation of photoanodes with polymer surface coatings prepared by electropolymerization. The polymer interfaces are designed to promote directional electron transfer at the interface, thereby resulting in a better solar energy conversion efficiency. The structure of the surface polymer enables the incorporation of catalyst units to the interface. To this end, we have prepared several novel iridium-oxide nanoparticle suspensions, using two different synthetic methods, to serve as the water-oxidation catalysts in our system. During the synthesis, the nanoparticles are functionalized with specific capping groups that contain terminal double bonds, through which they can be incorporated to the surface polymer electrochemically. Using acrylic acid and acrylamide as small molecule precursors, electro-polymer coatings have been prepared on FTO (fluorine-doped tin oxide) surfaces. Future research work will involve the incorporation of functionalized iridium oxide nanoparticles in the poly(acrylic acid/acrylamide) films and the characterization of their catalytic activity toward water oxidation. The method will then be extended to tin-oxide and titanium-dioxide semiconductor electrodes for preparing photo-active interfaces.

View Presentation

CHEM2019CASTILLO16416 CHEM

RATIOMETRIC MOLECULAR ROTORS FOR DETERMINING PHASE-TRANSITIONS OF SOFT MATERIALS

Type: Graduate
Author(s): Marlius Castillo Chemistry & Biochemistry Zygmunt Gryczynski Physics & Astronomy Zhangatay Nukureyev Physics & Astronomy
Advisor(s): Sergei Dzyuba Chemistry & Biochemistry
Location: Session: 1; Basement; Table Number: 3

presentation location

Soft matter, such as organogels, waxes and polymer films have found numerous applications in various areas of sciences, engineering and medicine. Ability to assess and monitor their structural organization and physical properties is of the outmost importance. However, there are no convenient methods to accomplish this task.
Small molecule environmental probes have been instrumental in providing information about changes of various types of media upon exposure to external stimuli. Our group has demonstrated the validity of using these probes, also known as molecular rotors, for investigating various types of media. This poster will highlight our efforts on the developments and applications of ratiometirc molecular rotors that allow determining structural integrity as well as properties of various industrially important, medically- and energy-relevant soft matter materials.

(Presentation is private)

CHEM2019FAHIM64637 CHEM

Unusual Liquid-liquid Phase Separation of Lysozyme Aqueous Solutions at Physiological pH and Salt Concentration

Type: Graduate
Author(s): Aisha Fahim Chemistry & Biochemistry
Advisor(s): Onofrio Annunziata Chemistry & Biochemistry
Location: Session: 1; 3rd Floor; Table Number: 1

presentation location

Liquid-liquid phase separation (LLPS) of protein aqueous mixtures is the reversible condensation of protein-rich micro droplets occurring below a well-defined LLPS temperature. LLPS studies of protein mixtures are fundamental for understanding the membrane-less compartmentalization inside living cells, protein-aggregation diseases, protein-based drug formulations, enzyme-based materials and molecular interactions. It is known that aqueous solutions of the protein lysozyme in the presence of phosphate buffer at neutral pH and physiological salt concentration undergo LLPS upon cooling below ≈ 0 °C. The obtained lysozyme-rich micro droplets rapidly dissolve upon heating above the LLPS temperature. In this work, it will be shown that an apparently undisruptive substitution of phosphate buffer with another well-known buffer, 4-(2-hydroxyethyl)-1-piperazineethanesulfonate (HEPES), to lysozyme aqueous solutions significantly alter the LLPS mechanism. Specifically, contrary to the case of phosphate buffer, the micro droplets produced below ≈ 0 °C remain surprisingly stable upon heating even at ≈ 30-40 °C. Related LLPS studies in both acidic and basic conditions show similar anomalous LLPS behavior. Our results indicate that HEPES triggers a second protein self-assembly process that is catalyzed by LLPS. These findings show that protein aqueous mixtures in the presence of HEPES buffer could be exploited for the preparation of protein-based materials. They also suggest that the combination of a protein self-assembly with LLPS may be a mechanism involved in the formation of membrane-less globular compartments inside the cytoplasm of living cells.

View Presentation

CHEM2019LE4831 CHEM

Formation of Platinum Nanocrystals on Silicon Nanotubes and in vitro Anti-cancer Activity of the composites

Type: Graduate
Author(s): Nguyen Le Chemistry & Biochemistry
Advisor(s): Jeffery Coffer Chemistry & Biochemistry Giridhar Akkaraju Biology
Location: Session: 2; 1st Floor; Table Number: 3

presentation location

The semiconductor Silicon (Si) remains a significant material in the electronic device and photovoltaic industries [1]. Especially, nanostructured forms of Si with a porous morphology (pSi) exhibit interesting properties which can be controlled via modulating pore structure and surface chemistry [1]. Recently, synthesis of a unique one-dimensional form of Si, namely nanotubes, with tunable structure (shell thickness, length, inner diameter and porous morphology) has been demonstrated, thereby suggesting newly emerging applications [2]. For instance, recent works have indicated Si nanotubes (SiNTs) can efficiently serve as a reaction vessel for formation of organometal perovskite nanostructures and a template for superparamagnetic iron oxide (Fe3O4) loading [3], [4]. In an observation of dissolution of SiNTs with a porous morphology (pSiNTs), the material readily resorbed in buffered media at physiological conditions in a similar manner to bioactive nanostructured porous silicon, thereby implying potential therapeutic applications of this material [2].
In chemotherapy, platinum-based cancer drugs, such as cisplatin and carboplatin, are widely used as effective drugs against various types of cancer [5]. Interestingly, while elemental platinum nanoparticles (Pt NPs) have been well investigated in diverse catalytic processes, in recent years, Pt NPs have also been discovered as a potent anti-cancer agent in nanomedicine, implying the use of the nanodrug to counteract chemoresistance in some cancer cell lines [6], [7]. Recent reports have also indicated that enhanced cytotoxicity against selected cancer cell lines is ascribed to ultra-small Pt NPs, especially those with size less than 3 nm [7]. In this report, pSiNTs were investigated as a template for the formation of Pt NPs, and in vitro cytotoxicity of the composites was evaluated against HeLa cancer cells.
Regarding fabrication, pSiNTs with short lengths (~500 nm) and thin walls (~10 nm) were synthesized via a ZnO nanowire sacrificial template method. Based on a combination of characterization techniques [High resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray analysis (TEM-EDX)], it is suggested that pSiNTs surface functionalized with 3-aminopropyltriethoxysilane can facilitate formation of Pt nanocrystals (Pt NCs) with size ranging from 1-3 nm utilizing a K2PtCl4 precursor. By varying reaction conditions (concentration of Pt salt and incubation time), the amount of Pt NCs deposited on SiNTs can be sensitively tuned from 20 to 55 wt%. In terms of cytotoxicity evaluation of the composites against HeLa cells, cellular viability was assessed using CellTiter-Glo assays, which quantified the amount of ATP in metabolically active cells. Our findings suggest that Pt NCs-SiNTs composites were toxic to HeLa cells, and less than 50% cells were still viable after 3 days of treatment with the composites at doses of 35 μg/ml and 50 μg/ml. Results from caspase 3/7 assays also showed that caspase 3/7 level in cells treated with Pt NCs-SiNTs approximately ranged from 1.5 to 2-fold increase compared to cells without treatment, thereby suggesting apoptosis as the likely mechanism. In vitro cellular uptake studies analyzed by confocal microscopy also confirmed accumulation of the composites within the cytoplasm of the cells after the treatment, consistent with a “Trojan horse” mechanism in which high concentrations of Pt NCs are internalized within cells assisted by pSiNTs and subsequently released via dissolution of the nanotube matrix.
The studies presented herein describe a novel strategy to form and immobilize highly compact clusters of Pt NCs by using pSiNTs as a template. In terms of bio-relevant applications, in vitro studies provide new insights into the anti-cancer properties of the newly discovered composites in inducing apoptosis in HeLa cells, thereby providing significant potential uses of Pt NCs-SiNTs in cancer treatment. Further investigations into gene expression profile(s) may be necessary in order to clarify the impact of the composites on cell survival in terms of molecular mechanisms.
References
1. H. Santos, Porous Silicon for Biomedical Applications, Ed. Cambridge: Woodhead Publishing, (2014).
2. X. Huang, R. Gonzalez-Rodriguez, R. Rich, Z. Gryczynski and J. L. Coffer, Chem. Commun., 49, 5760 (2013).
3. R. Gonzalez-Rodriguez, N. Arad-Vosk, N. Rozenfeld, A. Sa'ar and J. L. Coffer, Small, 12(33), (2016).
4. P. Granitzer, K. Rumpf, R. Gonzalez, J. Coffer, M. Reissner, Nanoscale Res. Lett., 9, 413 (2014).
5. T. C. Johnstone, K. Suntharalingam and S. J. Lippard, Chem. Rev., 116 (5), 3436–3486, (2016).
6. X. Li, G. Li, W. Zang, L. Wang and X. Zhang, Catal. Sci. Technol., 4, 3290-3297 (2014).
7. H. Xia, F. Li, X. Hu, W. Park, S. Wang, Y. Jang, Y. Du, S. Baik, S. Cho, T. Kang, D. Kim, D. Ling, K. M. Hui and T. Hyeon, ACS Cent. Sci., 2, 802−811 (2016).

(Presentation is private)

CHEM2019MEHMOOD38923 CHEM

An Orbital-overlap Scale for Solvent Hardness and Softness: Method and Application to Ionic Liquids

Type: Graduate
Author(s): Arshad Mehmood Chemistry & Biochemistry
Advisor(s): Benjamin G. Janesko Chemistry & Biochemistry
Location: Session: 1; 2nd Floor; Table Number: 1

presentation location

The chemical hardness of a solvent can play a decisive role in solubility and reactivity in solution. Several empirical scales of solvent softness have been proposed. We explore whether computed properties of solvent molecules can reproduce these empirical scales. Our "orbital overlap distance" quantifying the size of orbitals at a molecule's surface effectively reproduces the Marcus μ-scale of solvent softness. The orbital overlap distance predicts that the surfaces of chemically hard solvent molecules is dominated by compact orbitals possessing a small orbital overlap distance. In contrast, the surface of chemically soft solvent molecules has a larger contribution from diffuse orbitals and a larger orbital overlap distance. Other "conceptual density functional theory" descriptors, including the global hardness and electronegativity, can also reproduce empirical solvent scales. We further introduce a "solvent versatility" RMSD Dsurf scale quantifying variations in the surface orbital overlap distance. "Good" solvents such as DMSO, which combine chemically "hard" and "soft" sites within a single molecule, possess a large RMSD Dsurf. We conclude by applying this approach to predict the Marcus μ-parameters for widely-used ionic liquids and ionic liquid - cosolvent systems.

View Presentation

CHEM2019MEKHAIL60535 CHEM

Functional groups effect on the electronics of macrocyclic pyridinophane

Type: Graduate
Author(s): Magy Mekhail Chemistry & Biochemistry
Advisor(s): Kayla Green Chemistry & Biochemistry
Location: Session: 2; 3rd Floor; Table Number: 8

presentation location

The use of macrocyclic pyridinophane has been growing in the fields of bioinorganic modeling, catalysis and imaging. However, the functionalization of the pyridine has not been fully explored. Therefore, the Green Research Group we produce a series of 12-membered tetra-aza N-heterocyclic amines, derived from pyclen with different functional groups substituted at the para position. Using Hammett plot analysis, X-ray diffraction, electrochemistry and C-C coupling catalytic results, we aim to understand the impact of these functional groups on the donating) of the ligand. From the Hammett plot results we predict how other functional groups will affect the electronics and reveal whether the resonance or inductive effects will mitigate the coordination environment.
The use of macrocyclic pyridinophane has been growing in the fields of bioinorganic complexes modeling, catalysis, and imaging. However, the functionalization of the pyridine has not been fully explored. Therefore, the Green Research Group produced a series of 12-membered tetra-aza macrocycles derived from pyclen with different functional groups substituted at the para position. Using Hammett plot analysis, X-ray diffraction, electrochemistry, and C-C coupling catalytic results, we aim to understand the impact of these functional groups on the donor ability of each ligand. From the Hammett plot results we hope to predict how other functional groups will affect the electronics and reveal whether the resonance or inductive effects will mitigate the coordination environment and reactivity of each complex.

View Presentation

CHEM2019MONTOYA22550 CHEM

Steps Towards the Total Synthesis of Amaryllidaceae Alkaloids

Type: Graduate
Author(s): Adam Montoya Chemistry & Biochemistry
Advisor(s): David Minter Chemistry & Biochemistry
Location: Session: 1; 3rd Floor; Table Number: 6

presentation location

Phenanthridone-type alkaloids isolated from certain plants of the Amaryllidaceae family are of interest due to their pharmaceutically active nature. The compounds are commonly used in research concerning cancer, Alzheimer’s disease and other human illnesses. One of the main hindrances to such research is the limited availability of many of these compounds. The Minter group is interested in the development of procedures for synthesizing such alkaloids in a cost-effective and time efficient manner, while at the same time maintaining fair to excellent yields.
Techniques toward the synthesis of natural products of the Phenanthridone type are presented herein. Manipulations were tested and optimized on a model system in order to save both time and funds while developing a synthetic pathway to be utilized in the formation of more complex compounds. Setbacks such as controlling the stereochemistry of a tetra-substituted double bond reduction have been encountered. However, adjustments are being made to avoid such difficulties in the future. Ideally, the proposed scheme will ultimately allow for the synthesis of multiple phenanthridone analogs.

(Presentation is private)

CHEM2019SHARMA21186 CHEM

Exploring Cyanuric Chloride Chemistry to Synthesize Macrocycles of Different Sizes

Type: Graduate
Author(s): Vishal Sharma Chemistry & Biochemistry
Advisor(s): Eric Simanek Chemistry & Biochemistry
Location: Session: 1; 3rd Floor; Table Number: 4

presentation location

In chemistry, cyclic compounds of twelve or more atoms are considered macrocycles. Many bioactive, natural products containing macrocycles have been isolated and synthesized. Still, construction of macrocycles is usually considered a challenging step in their synthesis. Here, a route to different-sized macrocycles is described. These macrocycles arise from spontaneous cyclization of two identical subunits comprising a central triazine displaying both a masked aldehyde and hydrazine group. The aldehyde portion is presented on a linker that can comprise varying number of carbons. By varying this linker, macrocycles of 22, 24, and 26 atoms have been prepared. Future study focuses on probing macrocycle size with increasingly larger linkers.

View Presentation

CHEM2019WINTERS65295 CHEM

The Cost of Academic Methodologies

Type: Graduate
Author(s): Karen Winters Chemistry & Biochemistry Olivier Berger Chemistry & Biochemistry Sergei Dzyuba Chemistry & Biochemistry Axel Sabourin Chemistry & Biochemistry
Advisor(s): Jean-Luc Montchamp Chemistry & Biochemistry
Location: Session: 2; 1st Floor; Table Number: 6

presentation location

The cost of reagents and catalysts employed in synthetic methodologies developed in academia is very rarely discussed. Yet these costs are very real as they represent a significant portion of any grant proposal budget. The Cost of Academic Methodologies (CAM) is a novel concept, which should be considered when evaluating synthetic methodologies. CAM will allow for one to quantitatively evaluate with a numerical value a particular synthetic methodology that prepares a particular product. CAM will allow for a comparison among distinctly different reactions conditions, reagents, catalytic versus stoichiometric systems, etc. Cost considerations are almost always avoided in academic publications; however CAM is a parameter that can be useful to gauge seemingly non-comparable methodologies. Unlike specious or poorly-defined considerations often seen in manuscripts, such as “harshness” of conditions, “metal-free”, “precious metals are expensive”, etc., the CAM parameter is a real, tangible, aspect of academic methodologies, which is applicable to any chemical reaction.

(Presentation is private)

ENSC2019HALL12981 ENSC

Elevation analysis of Foster and Overton parks for radio-tracking bats

Type: Graduate
Author(s): Ellen Hall Environmental Sciences
Advisor(s): Victoria Bennett Environmental Sciences Tamie Morgan Geological Sciences
Location: Session: 1; 1st Floor; Table Number: 1

presentation location

Bats are critical to their surrounding environment, thus we need to know what resources bats need to survive, such as water. Many available water resources in urban areas are ephemeral and dry up during the hot Texas summers. We explored bat resource use in an urban environment by radio-tracking bats in local Fort Worth parks, Foster Park and Overton Park. We used Lidar and 3D mapping in ArcGIS 10.6 to portray our study site where bats were tracked. Using digital elevation, we evaluated high elevation points in the parks that can be used in conducting future surveys.

(Presentation is private)