Filter and Sort







ENSC2025TALWAR46537 ENSC

Bring on the Heat: How the Percentage of Tree Coverage affects the LST of Public Elementary Schools in Tarrant County

Type: Undergraduate
Author(s): Sahana Talwar Environmental Sciences
Advisor(s): Brendan Lavy Environmental Sciences
Location: Basement, Table 13, Position 2, 1:45-3:45

Increases in city size and frequency have correspondingly led to increases in Urban Heat Island (UHI) strength and frequency. These urban heat islands have had serious implications for both children’s health and education. One widely accepted UHI mitigation strategy is green spaces. However, these have mainly been studied in the context of parks. This study aims to fill in a necessary gap of knowledge by studying the effect of green spaces at elementary schools. This was done by looking at the percentage of tree coverage at 273 public elementary schools in Tarrant County and comparing them to the Land Surface Temperatures (LSTs) of those schools. Google Earth Engine, ArcGIS Pro, and Google Spreadsheets were the three main software systems used to accomplish this. This study found that the percentage canopy cover and LST were inversely proportional at elementary schools in Tarrant County. It also found that other factors apart from trees effect LST.

View Presentation

ENSC2025TIDWELL15008 ENSC

Fish Community Monitoring as part of the Trinity River Authority's Clean Rivers Program

Type: Undergraduate
Author(s): Logan Tidwell Environmental Sciences Angela Kilpatrick Environmental Sciences Ryan Seymour Environmental Sciences
Advisor(s): Michele Birmingham Environmental Sciences
Location: Third Floor, Table 1, Position 2, 1:45-3:45

With only four species of fish collected in the Dallas Fort Worth Metroplex as recently as the 1970’s, it is no surprise that the Trinity River was once referred to as the “mythological river of death”. Since then, coordinated improvements in water quality have led to the recovery of fish assemblages within the Trinity, becoming a well-documented environmental success story. To monitor that recovery, the Trinity River Authority has conducted Aquatic Life Monitoring surveys on one or more Trinity Basin waterbodies biannually since 2013. These surveys have targeted waterbodies with documented concerns or impairments for one or more water quality parameters, capturing conditions in both the Index (March 15-Oct 15) and Critical (July 1-Sept 30) periods. At each site, whole community fish data was collected via backpack electroshocking and seine netting, alongside benthic macroinvertebrate and habitat data. As of 2025, 30 surveys have been conducted on 13 waterbodies throughout the Upper Trinity basin. Although these surveys have targeted streams with water quality concerns, 90% of sites have scored as either High or Exceptional on the State of Texas Regionalized Nekton Index of Biotic Integrity. Here we will characterize the collected fish communities with over 12,500 individuals from 41 unique species collected during these surveys, while also describing the vision of the program over the next decade.

View Presentation

GEOL2025BENFORD22037 GEOL

Norfolk UST Risk Assesment

Type: Graduate
Author(s): Joshua Benford Geological Sciences
Advisor(s): Esayas Gebremicael Geological Sciences
Location: Basement, Table 1, Position 2, 11:30-1:30

Leaking underground storage tanks (USTs) pose a significant environmental hazard in Norfolk, Virginia, where factors such as weather, casing materials, and varying ground conditions contribute to potential leaks over time. Corrosion, exacerbated by Norfolk's coastal location and harsh soil conditions, is a primary cause of these leaks. Geographic Information System (GIS) tools can be utilized to develop a predictive model for identifying at-risk UST locations by integrating data from multiple sources, including UST records from the state of Virginia and other relevant datasets. This model would employ various spatial analysis techniques to generate maps and web applications, enabling field teams to validate its accuracy and support the City of Norfolk in mitigating risks associated with leaking USTs. The goal of this research is to produce valuable insights that help safeguard the health of Norfolk's residents and protect the delicate surrounding ecosystem, including the Atlantic Ocean, marshes, rivers, and Chesapeake Bay.

View Presentation

GEOL2025BOURGEOIS38565 GEOL

The Effect of Red-Light Traffic Cameras on Vehicle Collisions in Fort Worth

Type: Undergraduate
Author(s): Sovereign Bourgeois Environmental Sciences TJ Willson Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: SecondFloor, Table 3, Position 2, 1:45-3:45

Prior to 2019, Texas used red-light traffic cameras to deter drivers from driving recklessly and running red lights. However, due to legislation signed by Governor Greg Abbott, red-light cameras are no longer used in Texas. This decision was made to ‘protect drivers' constitutional rights.’ Additionally, it was argued that these cameras increased the rate of rear-end collisions.

This study investigates the effect of removing red-light cameras in Fort Worth before and after the ban by examining the rate of different types of collisions. The location data of crash sites and police reports will be mapped using ArcGIS Pro to determine the frequency and density of these crashes.

View Presentation

GEOL2025BREACH58826 GEOL

Amazon Deforestation: A Spatial Analysis of Its Impact on Carbon Sequestration and Global CO2 Emissions

Type: Undergraduate
Author(s): Lauren Breach Environmental Sciences Justus Bedford Interdisciplinary
Advisor(s): Esayas Gebremichael Geological Sciences
Location: FirstFloor, Table 2, Position 1, 11:30-1:30

The Amazon rainforest is one of the largest carbon sinks in the world, playing a critical role in regulating global carbon dioxide levels. However, deforestation has significantly reduced its ability to sequester carbon, contributing to rising CO2 emissions. We will analyze deforestation trends in the amazon over the last three decades by integrating satellite imagery, historical land cover data, and carbon flux models. Using remote sensing data from Nasa and Brazil’s National Institute for Space Research (INPE), we will generate temporal GIS layers to map forest loss and quantify the impact on carbon sequestration. Through identifying key deforestation hotspots, this project aims to provide important insights into the relationship between land-use changes and atmospheric carbon levels, supporting future conservation strategies and policy recommendations.

View Presentation