ENGR2025SCHMITT9722 ENGR
Type: Undergraduate
Author(s):
Zac Schmitt
Engineering
Advisor(s):
James Huffman
Engineering
Location: SecondFloor, Table 1, Position 3, 1:45-3:45
View PresentationThis study evaluates the structural integrity of reinforced concrete by comparing the mechanical properties of steel and fiberglass rebar. The primary objective is to assess the differences in material performance, performing compressive and flexural tests to quantify the ductility, load-bearing capacity, and durability of each rebar type under stress. The expected outcome is to determine the viability of fiberglass rebar as an effective alternative to traditional steel, particularly in terms of its mechanical performance and long-term reliability.
ENGR2025TUCCI30687 ENGR
Type: Undergraduate
Author(s):
Anna Tucci
Engineering
Ugur Topkiran
Physics & Astronomy
Advisor(s):
Anton Naumov
Physics & Astronomy
Location: Third Floor, Table 4, Position 3, 1:45-3:45
View PresentationGraphene quantum dots (GQDs) have emerged as a promising platform for drug delivery and bioimaging due to their nanoscale size, water solubility, biocompatibility, and fluorescence properties. When functionalized, they enable both therapeutic delivery and real-time tracking in biological systems. This study focuses on the engineering of an optical system designed to cost effectively perform ex vivo spectra collection of GQDs. We utilized a bifurcated fiber optic cable connected to a laser and spectrometer, enabling simultaneous excitation and signal collection through a single optical path. Because excitation and collection occurred at the same angle rather than the conventional 90-degree configuration, a high optical density 840 nm long pass emission filter is utilized to optimize signal collection and minimize scattering. The system's cheap and easy to build design offers a streamlined method for studying nanomaterial-based therapeutics, providing a foundation for future advancements in biomedical imaging.
ENGR2025VENEGAS7648 ENGR
Type: Undergraduate
Author(s):
Abigail Venegas
Engineering
Kevin Guajardo
Engineering
Monica Lopez
Engineering
Damilare Olukosi
Engineering
Advisor(s):
Jim Huffman
Engineering
Location: SecondFloor, Table 7, Position 1, 1:45-3:45
View PresentationThis study aims to educate participants about the formation and significance of grain structures in metals, focusing on the processes by which grains form and how these structures influence material properties. Using 1018 steel (low-carbon), 1045 steel (medium-carbon), 1080 steel (medium-carbon), ductile and grey cast iron, and PbSn (lead-tin) samples, 18 teams explored the random formation of grain structures through a series of preparatory steps, including mounting, grinding, polishing, etching, and hardness testing. Each team examined their samples at four magnifications to identify microstructural features and measure grain size using two different methods. In addition to the technical analysis, the teams focused on uncovering the artistic patterns that emerge from the randomness of grain formation. The study will highlight the art found in these naturally occurring structures, demonstrating how materials science and art intersect. By the end, participants gain an understanding of grain theory and microstructural analysis while also developing an appreciation for the unexpected artistic forms created by these random processes in materials like steel, cast iron, and lead-tin alloys.
ENSC2025ASARE16482 ENSC
Type: Graduate
Author(s):
Portia Asare
Environmental Sciences
Advisor(s):
Environmental Sciences
Esayas Gebremichael
Geological Sciences
Location: SecondFloor, Table 7, Position 3, 11:30-1:30
(Presentation is private)Rapid urbanization in the Dallas-Fort Worth metropolitan area is increasing pressure on water resources, including Lake Worth. This project will investigate the relationship between land use, land cover change, and water quality degradation in Lake Worth, a reservoir facing increasing development pressure near Fort Worth. The project will use historical land data to quantify land use/land cover change (LULC) within the watershed between 2000 and 2023. This land use data will be integrated with the publicly available water quality data (nutrients, dissolved oxygen, pH, turbidity) from the Surface Water Quality Monitoring Program and locations of permitted industrial discharge points from the Texas Commission on Water Quality. GIS techniques, including spatial joins, buffer analysis, and statistical modeling (regression, hotspot analysis), will be used to analyze the correlation between LULC and water quality parameters and identify pollution hotspots. The expected outcomes include detailed land use maps, a geodatabase of water quality and discharge points, statistical models quantifying the land use-water quality relationship, and identifying areas requiring management intervention. The study's findings will inform land use planning, water resource management, and sustainable urban development practices in the region while acknowledging limitations related to data availability, spatial resolution, causality, and model generalizability.
ENSC2025BUCKHALTER63042 ENSC
Type: Graduate
Author(s):
Hannah Buckhalter
Environmental Sciences
Advisor(s):
Brendan Lavy
Environmental Sciences