RAMA2024WASHINGTON917 RAMA
Type: Graduate
Author(s):
Morgan Washington
Ranch Management
Jeff Geider
Ranch Management
Ashley Titus
Ranch Management
Advisor(s):
Jeff Geider
Ranch Management
Location: Basement, Table 6, Position 3, 1:45-3:45
View PresentationCitizen (community) science platforms have become a crucial aspect of involving the public in scientific research. The platform Zooniverse particularly has grown to include a wide range of participants in the scientific community. Though there is a substantial amount of literature surrounding the efficacy of community science platforms, relatively few studies tackle applications in undergraduate education. This study investigates undergraduate student engagement with Zooniverse. Utilizing Zooniverse, participants analyzed the flowering of North Texas prairie species. Primary objectives include documenting the accuracy and speed of student identifications and comparing potential differences between historical botanical specimen images provided by the Botanical Research Institute of Texas and images collected from iNaturalist. These findings will help inform the usage of community science platforms in undergraduate education spaces and more particularly for non-science majors.
BIOL2022CARON53423 BIOL
Type: Graduate
Author(s):
Alexander Caron
Biology
Dustin Johnson
Biology
Shauna McGillivray
Biology
Yuri Strzhemechny
Biology
Advisor(s):
Shauna McGillivray
Biology
Location: Basement, Table 8, Position 2, 11:30-1:30
View PresentationAs the number of antibiotics in development dwindles and antibiotic resistance continues to rise,
there is a need for novel, non-traditional antibiotics such as zinc oxide nanoparticles (ZnO NPs).
While the broad-spectrum antimicrobial properties are well established, the mechanism of action
is still unknown. Previous work has proposed that reactive oxygen species (ROS), toxic Zn2+ ions,
and electrostatic interactions with the cell envelope may be implicated in the mechanism. To
evaluate which of these mechanisms are involved, we characterized the physical and genetic
properties that confer resistance to ZnO NPs in three novel ZnO resistant strains of
Staphylococcus aureus (ZnOR). These strains possess comparable growth rates and are at least
four times more resistant than the parental strain against ZnO NPs acquired from multiple
sources. This suggests that all ZnO NPs, regardless of morphology, size, or method of synthesis
share a mechanism of action. We found that cell charge, measured by cytochrome c, was not
different between the parental and resistant strains, indicating that electrostatic interactions
with the membrane are not involved in the mechanism. Additionally, the ZnOR strains shared a
similar susceptibility to H2O2, a ROS commonly suggested to be generated by ZnO. We have also
found that internalization and physical contact with the bacterial envelope are not necessary for
ZnO mediated growth inhibition suggesting that ZnO produces a soluble species that is
responsible for the antibacterial action. Future work includes sequencing the genome of the
parental and ZnOR strains to identify mutations that led to gain of resistance.
BIOL2023GALLEGOS49382 BIOL
Type: Graduate
Author(s):
Kyle Gallegos
Biology
Mariah Green
Biology
Jacob Malmquist
Biology
Julio Manceras
Biology
Shauna McGillivray
Biology
Advisor(s):
Shauna McGillivray
Biology
Location: Third Floor, Table 2, Position 2, 1:45-3:45
View PresentationBacillus anthracis is the causative agent of the fatal disease anthrax, and its virulence is of great interest due to its potential as a biological weapon. B. anthracis causes disease by both escaping immune defenses and acquiring nutrients. A necessary nutrient that pathogens must acquire from its host is iron. To discover novel genes essential for iron acquisition, we screened transposon mutants in iron-deficient media with hemoglobin as the sole source of iron. We further prioritized the mutants discovered in our in vitro screen by assessing for attenuated virulence using our in vivo G. mellonella infection model. We found one mutant that has a disruption in the first gene of a two-gene operon containing putative dUTPase and aminopeptidase genes known as 9F12 Tn. Neither of these genes have been previously linked to iron acquisition. To confirm the role of the dUTPase gene in the observed 9F12 Tn phenotype, we created an independent insertional mutant in the dUTPase gene (dUTPase IM). We found that both of our mutants, 9F12 Tn and dUTPase IM, could not use hemoglobin as a source of iron. We also found that G. mellonella injected with 9F12 Tn and dUTPase IM had higher survival rates than those injected with the parent strain. Our results indicate that the dUTPase gene is necessary for iron-acquisition and virulence in B. anthracis. This study furthers our understanding of iron acquisition in a bacterial pathogen and increases our knowledge of how B. anthracis causes disease.
BIOL2023HONA33660 BIOL
Type: Graduate
Author(s):
Salina Hona
Biology
Graham Ellis
Biology
Shauna McGillivray
Biology
Kelsey Waite
Biology
Advisor(s):
Shauna McGillivray
Biology
Location: First Floor, Table 6, Position 1, 11:30-1:30
View PresentationBacillus anthracis is a gram-positive bacterium that causes the deadly anthrax disease. ClpX is a subunit of ClpXP protease that is known to be essential in virulence as well as providing resistance to cell-envelope targeting antibiotics such as penicillin, daptomycin, and the antimicrobial peptide LL-37. While clpX is critical for virulence in B. anthracis, it is unlikely to be directly mediating the effect. Hence, our lab investigated the genes that are differentially expressed in the ΔclpX mutant compared to the wild type B. anthracis through microarray analysis. We found 119 genes that were highly differentially expressed in the ΔclpX mutant. In this study, we focused on two genes sigM and glpF, which are downregulated in the ΔclpX mutant, because sigM and glpF confer resistance to cell-wall targeting antibiotics in the closely related gram-positive bacterial species, Bacillus subtilis and Staphylococcus aureus respectively. We wanted to determine whether loss of sigM and glpF will lead to similar phenotypes as loss of clpX in B. anthracis Sterne. We found that sigM mutant is more susceptible to penicillin and daptomycin, although in a growth phase dependent manner, but glpF mutant is not. Future studies will examine the susceptibility of these mutants to LL-37 and other stressors such as acid and heat stress. Complementation of these mutants will serve to further support the importance of these genes for the roles we examined. This research will aid in understanding the mechanism of antibiotic resistance and virulence in the ClpX regulatory network in B. anthracis.
BIOL2023HOWE57909 BIOL
Type: Graduate
Author(s):
Natasha Howe
Biology
Matthew Hale
Biology
Advisor(s):
Matt Hale
Biology
Location: Basement, Table 5, Position 2, 11:30-1:30
View PresentationSalmon hatcheries are widely used across the Pacific Northwest to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish have reduced fitness compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a potential risk to wild populations if introgression between hatchery and wild fish occurs. While few studies have investigated domestication selection on a genomic level, none have done so in parallel across multiple hatchery-wild population pairs. In this study, we examined three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, and their corresponding wild progenitor populations using low-coverage whole genome sequencing. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. Each hatchery population, which was reared in a hatchery for approximately seven generations, was then compared to its wild progenitor population using multiple metrics of genomic divergence. While evaluating population-level genomic differentiation (FST), we discovered numerous outlier peaks in each hatchery-wild pair, although no outliers were shared across the three comparisons. Further analyses indicated that these relatively small (5 – 10 kilobase) peaks are likely due to genetic hitchhiking on hatchery-selected alleles, though the effects of these peaks on fitness are unknown. Overall, our genome-wide analyses demonstrate that domestication selection is prevalent in all hatchery facilities, but the genetic pathways differ across populations, possibly due to a polygenic basis of fitness related traits. These results provide fine-scale genetic evidence for domestication and highlight the need to assess if certain management practices, such as integration of wild broodstock, can universally mitigate genetic risks despite multiple pathways of domestication.
BIOL2023LACY41889 BIOL
Type: Graduate
Author(s):
Vivienne Lacy
Biology
Morgan Bertrand
Biology
Gary Boehm
Psychology
Michael Chumley
Biology
Chelsy Mani
Biology
Allison Regan
Biology
Advisor(s):
Michael Chumley
Biology
Gary Boehm
Biology
Location: Basement, Table 10, Position 2, 1:45-3:45
View PresentationOxidative stress caused by the imbalance between antioxidants and oxidative species is a major component of several chronic diseases such as cardiovascular disease, cancer, and some neurodegenerative diseases. Potential therapeutics have previously been explored to address the role of oxidative stress in disease, but many have been unsuccessful or only target one aspect of this multifaceted disease pathway. To address this, Dr. Green’s lab at TCU created the L2 compound to act as a multimodal antioxidant therapy. Specifically, preliminary in vivo studies have demonstrated L2 can increase the cellular level of nuclear factor-erythroid 2-related factor (Nrf2), the natural antioxidant pathway of the cell. Normally this pathway is activated due to oxidative stress, allowing Nrf2 to migrate to the nucleus where it acts as an important transcription factor to produce antioxidant and detoxifying enzymes. This data was unexpected as the addition of antioxidant compound L2 should mitigate the need to activate the Nrf2 antioxidant pathway. Therefore, it is the purpose of this study to confirm that treatment of cells with L2 results in translocation of Nrf2 into the nucleus of cells. Further experiments will determine if this translocation leads to antioxidant effects as proposed.
BIOL2023LICARI30998 BIOL
Type: Graduate
Author(s):
Sarah LiCari
Biology
Sarah Fritts
Biology
Amanda Hale
Biology
Tod Katzner
Biology
David Nelson
Biology
Sara Weaver
Biology
Dean Williams
Biology
Advisor(s):
Dean Williams
Biology
Location: Basement, Table 5, Position 1, 1:45-3:45
View PresentationWind-energy production has expanded due to interest in increasing energy production and decreasing reliance on fossil fuels. Unfortunately, collisions and fatalities are unintended consequences of wind-energy production for many bat species. The Mexican free-tailed bat (Tadarida brasiliensis) has a non-migratory population in California that has an assumed sex ratio of 50:50, as seen in other nonmigratory bat species, and migratory sex-skewed (9:1 Female:Male) population in Texas that arrives in the summer to form maternal colonies. Knowing how males and females are impacted by collision mortality at wind turbines can provide insights into population-level effects. We determined the sex of bat carcasses discovered at wind turbines using DNA extracted from wing tissue samples collected during post-construction surveys in California (n = 502, 5 years) and Texas (n = 437, 3 years). Preliminary analysis of bats from California suggests that the sex ratio of fatalities did not differ significantly from 50:50 from 2016 to 2020 (p>0.05). In contrast in bats from Texas, the sex ratio of fatalities was significantly female-skewed in 2017 (6.8:3.2, z=3.25, p<0.001), became less female-skewed in 2018 (4.8:5.2) and 2021 (4.4:5.6), with neither 2018 nor 2021 being significantly different from 50:50 (p>0.05). This change in sex ratio in Texas might be demographically relevant if the loss of females from previous years is causing the migratory population to become less female-skewed over time. Studies of sex ratios at summer and winter colonies would allow determination of whether this same pattern is observed at the population level.
BIOL2023MANI27783 BIOL
Type: Graduate
Author(s):
Chelsy Mani
Biology
Giridhar Akkaraju
Biology
Morgan Bertrand
Biology
Gary Boehm
Psychology
Michael Chumley
Biology
Paige Kuhle
Biology
Vivienne Lacy
Biology
Mackenzie Nichols
Biology
Allison Regan
Biology
Advisor(s):
Michael Chumley
Biology
Location: Third Floor, Table 1, Position 1, 1:45-3:45
View PresentationOxidative stress is the imbalance between reactive oxygen species and antioxidants in a cell. Often this imbalance is caused by an increase of reactive oxygen species (ROS) leading to dyshomeostasis of the cellular redox balance. Oxidative stress is a major component of several chronic diseases including cardiovascular diseases, cancer and neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. To mitigate the damage caused by oxidative stress our cells are capable of producing their own antioxidants. One cellular mechanism involves the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway which can be activated in the presence of ROS. To better understand how this pathway works, it is important to track Nrf2 during activation of this pathway. Here we test three different plasmids designed to either force expression of “tagged” proteins in the Nrf2 pathway, or to provide a readout mechanism for the level of Nrf2 activation. These experiments lend support for the efficacy of using these tools to better understand the Nrf2 pathway.
BIOL2023STRANG30700 BIOL
Type: Graduate
Author(s):
Benjamin Strang
Biology
Advisor(s):
Matt Chumchal
Biology
Location: Basement, Table 6, Position 2, 1:45-3:45
View PresentationThe Thule Defense Zone in Northwest Greenland is a region of ecological concern because of its sensitive Arctic tundra ecosystem. Anthropogenic-induced climate change and deposition of contaminants into these fragile systems has the potential to alter these ecosystems. Mercury is a toxin of global importance that is capable of contaminating landscapes far from its source of origin, including those in the high Arctic. Understanding levels of mercury contamination that persist across landscapes requires analysis of aquatic ecosystems, as these systems are where mercury is converted into its toxic form, methylmercury. In Summer 2023, the Aquatic Ecology Lab at Texas Christian University will be traveling to the Thule Defense Zone and testing six ponds for mercury contamination. To better understand how contaminants reach these ponds, nutrient inputs from the landscape need to be understood. To date, there is no available watershed map for the Thule Defense Zone that delineates the hydrological characteristics of these ponds. My project will use Geographic Information Systems (GIS) to create a formal delineation of these aquatic systems.
BIOL2023TAMAYO64218 BIOL
Type: Graduate
Author(s):
Maverick Tamayo
Biology
Peter Fritsch
Biology
John Horner
Biology
Advisor(s):
John Horner
Biology
Location: Second Floor, Table 6, Position 2, 1:45-3:45
View PresentationBiodiversity, which is important to the function and stability of ecosystems, is currently being lost to extinction at an alarming rate. Thus, cataloguing and documenting the biodiversity of the world has never been more critical. In this study, the diversity and taxonomy of the tropical blueberries (Vaccinium L., Ericaceae) of Palawan and Mindanao Islands, Philippines were revisited. A total of 27 species (24 from Mindanao and four from Palawan) were documented and recorded. Six novel species, four new island records, and clarification of three ambiguous species complexes were included. Two of the six novel species (V. jubatum and V. vomicum) were discovered among historical herbarium collections, while the rest (V. carmesinum, V. coarctatum, V. fallax, and V. gamay) were discovered during botanical excursions. Two previously island endemic blueberries, V. cebuense and V. banksii, were documented to have an extended distribution in Mindanao. Additionally, V. irigaense is also recorded in Mindanao, whereas V. pseudocaudatum is recorded for the flora of Palawan. Further, the V. barandanum, V. caudatum, and V. halconense species complexes were taxonomically explained. The nomenclatural status of these species was stabilized through assigning type specimens following specifications of the International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code). We concluded that Mindanao Island is the center of Philippine Vaccinium diversity. This study underscores the crucial role of herbaria in understanding the floristic diversity of the world. This study also serves as a basis for taxonomical studies of the other blueberries in the Philippine Islands and Southeast Asia.