BIOL2023LACY41889 BIOL
Type: Graduate
Author(s):
Vivienne Lacy
Biology
Morgan Bertrand
Biology
Gary Boehm
Psychology
Michael Chumley
Biology
Chelsy Mani
Biology
Allison Regan
Biology
Advisor(s):
Michael Chumley
Biology
Gary Boehm
Biology
Location: Basement, Table 10, Position 2, 1:45-3:45
View PresentationOxidative stress caused by the imbalance between antioxidants and oxidative species is a major component of several chronic diseases such as cardiovascular disease, cancer, and some neurodegenerative diseases. Potential therapeutics have previously been explored to address the role of oxidative stress in disease, but many have been unsuccessful or only target one aspect of this multifaceted disease pathway. To address this, Dr. Green’s lab at TCU created the L2 compound to act as a multimodal antioxidant therapy. Specifically, preliminary in vivo studies have demonstrated L2 can increase the cellular level of nuclear factor-erythroid 2-related factor (Nrf2), the natural antioxidant pathway of the cell. Normally this pathway is activated due to oxidative stress, allowing Nrf2 to migrate to the nucleus where it acts as an important transcription factor to produce antioxidant and detoxifying enzymes. This data was unexpected as the addition of antioxidant compound L2 should mitigate the need to activate the Nrf2 antioxidant pathway. Therefore, it is the purpose of this study to confirm that treatment of cells with L2 results in translocation of Nrf2 into the nucleus of cells. Further experiments will determine if this translocation leads to antioxidant effects as proposed.
BIOL2023LICARI30998 BIOL
Type: Graduate
Author(s):
Sarah LiCari
Biology
Sarah Fritts
Biology
Amanda Hale
Biology
Tod Katzner
Biology
David Nelson
Biology
Sara Weaver
Biology
Dean Williams
Biology
Advisor(s):
Dean Williams
Biology
Location: Basement, Table 5, Position 1, 1:45-3:45
View PresentationWind-energy production has expanded due to interest in increasing energy production and decreasing reliance on fossil fuels. Unfortunately, collisions and fatalities are unintended consequences of wind-energy production for many bat species. The Mexican free-tailed bat (Tadarida brasiliensis) has a non-migratory population in California that has an assumed sex ratio of 50:50, as seen in other nonmigratory bat species, and migratory sex-skewed (9:1 Female:Male) population in Texas that arrives in the summer to form maternal colonies. Knowing how males and females are impacted by collision mortality at wind turbines can provide insights into population-level effects. We determined the sex of bat carcasses discovered at wind turbines using DNA extracted from wing tissue samples collected during post-construction surveys in California (n = 502, 5 years) and Texas (n = 437, 3 years). Preliminary analysis of bats from California suggests that the sex ratio of fatalities did not differ significantly from 50:50 from 2016 to 2020 (p>0.05). In contrast in bats from Texas, the sex ratio of fatalities was significantly female-skewed in 2017 (6.8:3.2, z=3.25, p<0.001), became less female-skewed in 2018 (4.8:5.2) and 2021 (4.4:5.6), with neither 2018 nor 2021 being significantly different from 50:50 (p>0.05). This change in sex ratio in Texas might be demographically relevant if the loss of females from previous years is causing the migratory population to become less female-skewed over time. Studies of sex ratios at summer and winter colonies would allow determination of whether this same pattern is observed at the population level.
BIOL2023MANI27783 BIOL
Type: Graduate
Author(s):
Chelsy Mani
Biology
Giridhar Akkaraju
Biology
Morgan Bertrand
Biology
Gary Boehm
Psychology
Michael Chumley
Biology
Paige Kuhle
Biology
Vivienne Lacy
Biology
Mackenzie Nichols
Biology
Allison Regan
Biology
Advisor(s):
Michael Chumley
Biology
Location: Third Floor, Table 1, Position 1, 1:45-3:45
View PresentationOxidative stress is the imbalance between reactive oxygen species and antioxidants in a cell. Often this imbalance is caused by an increase of reactive oxygen species (ROS) leading to dyshomeostasis of the cellular redox balance. Oxidative stress is a major component of several chronic diseases including cardiovascular diseases, cancer and neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. To mitigate the damage caused by oxidative stress our cells are capable of producing their own antioxidants. One cellular mechanism involves the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway which can be activated in the presence of ROS. To better understand how this pathway works, it is important to track Nrf2 during activation of this pathway. Here we test three different plasmids designed to either force expression of “tagged” proteins in the Nrf2 pathway, or to provide a readout mechanism for the level of Nrf2 activation. These experiments lend support for the efficacy of using these tools to better understand the Nrf2 pathway.
BIOL2023STRANG30700 BIOL
Type: Graduate
Author(s):
Benjamin Strang
Biology
Advisor(s):
Matt Chumchal
Biology
Location: Basement, Table 6, Position 2, 1:45-3:45
View PresentationThe Thule Defense Zone in Northwest Greenland is a region of ecological concern because of its sensitive Arctic tundra ecosystem. Anthropogenic-induced climate change and deposition of contaminants into these fragile systems has the potential to alter these ecosystems. Mercury is a toxin of global importance that is capable of contaminating landscapes far from its source of origin, including those in the high Arctic. Understanding levels of mercury contamination that persist across landscapes requires analysis of aquatic ecosystems, as these systems are where mercury is converted into its toxic form, methylmercury. In Summer 2023, the Aquatic Ecology Lab at Texas Christian University will be traveling to the Thule Defense Zone and testing six ponds for mercury contamination. To better understand how contaminants reach these ponds, nutrient inputs from the landscape need to be understood. To date, there is no available watershed map for the Thule Defense Zone that delineates the hydrological characteristics of these ponds. My project will use Geographic Information Systems (GIS) to create a formal delineation of these aquatic systems.
BIOL2023TAMAYO64218 BIOL
Type: Graduate
Author(s):
Maverick Tamayo
Biology
Peter Fritsch
Biology
John Horner
Biology
Advisor(s):
John Horner
Biology
Location: Second Floor, Table 6, Position 2, 1:45-3:45
View PresentationBiodiversity, which is important to the function and stability of ecosystems, is currently being lost to extinction at an alarming rate. Thus, cataloguing and documenting the biodiversity of the world has never been more critical. In this study, the diversity and taxonomy of the tropical blueberries (Vaccinium L., Ericaceae) of Palawan and Mindanao Islands, Philippines were revisited. A total of 27 species (24 from Mindanao and four from Palawan) were documented and recorded. Six novel species, four new island records, and clarification of three ambiguous species complexes were included. Two of the six novel species (V. jubatum and V. vomicum) were discovered among historical herbarium collections, while the rest (V. carmesinum, V. coarctatum, V. fallax, and V. gamay) were discovered during botanical excursions. Two previously island endemic blueberries, V. cebuense and V. banksii, were documented to have an extended distribution in Mindanao. Additionally, V. irigaense is also recorded in Mindanao, whereas V. pseudocaudatum is recorded for the flora of Palawan. Further, the V. barandanum, V. caudatum, and V. halconense species complexes were taxonomically explained. The nomenclatural status of these species was stabilized through assigning type specimens following specifications of the International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code). We concluded that Mindanao Island is the center of Philippine Vaccinium diversity. This study underscores the crucial role of herbaria in understanding the floristic diversity of the world. This study also serves as a basis for taxonomical studies of the other blueberries in the Philippine Islands and Southeast Asia.
BIOL2023WHITMORE34464 BIOL
Type: Graduate
Author(s):
Kimberlee Whitmore
Biology
Advisor(s):
Matt Chumchal
Biology
Location: Second Floor, Table 5, Position 1, 1:45-3:45
View PresentationThe Great Salt Lake in Utah is an important stopover point for many migratory bird species. Birds that stop to breed or forage at the Great Salt Lake may be at risk of mercury contamination due to high levels of methylmercury that are found in the lake. The purpose of this study was to examine the transfer of mercury from the lake into the terrestrial food web using organisms at the base of the food web. During the summers of 2019-2021 western spotted orb weaver spiders (Neoscona oaxacensis) and, when possible, brine flies (Ephydra sp.) were collected from various sites on Antelope Island. These specimens were analyzed for total mercury content using a Nippon MA-3000. In addition, satellite imagery and GIS software were used to document the approximate distance from the collection sites to the water surface. We examine differences between years, study sites and spider body size. We also examined the correlation between mercury levels and environmental conditions.
CHEM2023CLATON38544 CHEM
Type: Graduate
Author(s):
Liam Claton
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
Location: Basement, Table 1, Position 3, 11:30-1:30
View PresentationBarriers to rotation within triazine compounds have been previously explored by Katritzky and Birkett [1-2], but these studies have been limited to differences in the substituent groups on the triazine as well as the degree of substitution (mono, di, tri). This study explores how the barriers to rotation within triazine containing compounds are affected by solvent and protonation state. Overall, these molecules are of interest due to their wide range of applications in dendrimer and macrocycle synthesis as well as pharmaceutical drug development [3-4]. The results of this study illustrate how solvent selection can significantly impact the distribution of rotational isomers (rotamers) and how barriers to rotation can be increased by protonation of the triazine ring.
CHEM2023GRUBBS61709 CHEM
Type: Graduate
Author(s):
Maegyn Grubbs
Chemistry & Biochemistry
Sergei Dzyuba
Chemistry & Biochemistry
Advisor(s):
Jeff Coffer
Chemistry & Biochemistry
Location: Third Floor, Table 10, Position 1, 11:30-1:30
View PresentationMetal-halide perovskites are crystalline materials that work as a semiconductor in both Light Emitting Diodes (LEDs) and solar cells. In general, perovskites possess the formula ABX3. For this project, the A site is an organic molecule such as Methylammonium (MA), the B site is Lead, and the X site is Bromide. While perovskites are easily fabricated, their crystal size and number of defects present are challenging to control. Defects cause LEDs to be less stable and/or less photoluminescent (bright) and cause solar cells to be less efficient at converting light to energy. One approach to reduce the number of defects is to use ionic liquids during perovskite formation. Ionic liquids are compounds made of ions in the liquid state due to a low melting temperature. They can be added to the perovskite precursor solution to slow down the crystallization process so that fewer defects are created. The goal of this project is to create new metal halide perovskites in the presence of selected ionic liquids, evaluate their structure and photophysical properties, with the long-term goal of creating new LEDs that are both stable and efficient.
In this project, cetyl-ionic liquids (cetyl meaning 16 carbon chains) were investigated for their effects on perovskite structure and light emission. The three ionic liquids were investigated: [C16-mim]Br (referred to as "IL1"), [C16-py]Br ("IL2"), and [C16-C1pyrr]Br ("IL3"). Variations on the addition method of ionic liquids to the perovskite precursor were studied as well. It was hypothesized that the inclusion of cetyl-ionic liquids will protect the perovskite films from the environment (increasing stability) by providing a hydrophobic layer on the surface and will improve the electronic properties by filling in pinholes that cause defects. It is found that perovskite films with IL3 are more photoluminescent than the perovskite films formed with IL1, IL2, or no IL (control). Preliminary experiments varying the addition method of IL3 during film formation have shown that the perovskite films are brightest when IL3 is added to both the precursor and the antisolvent layers at the beginning of the fabrication process. These results, along with detailed structural characterization of a given perovskite film, will be discussed in this presentation.
CHEM2023MENKE34348 CHEM
Type: Graduate
Author(s):
Alexander Menke
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
Location: Basement, Table 6, Position 1, 11:30-1:30
View PresentationDating back to 1550 B.C., ancient civilizations used moldy bread and medicinal soil to treat infections and wounds. Today, antibiotics are commonly used to treat bacterial infections. Salvarsan, the first antibiotic, was developed in 1910, followed by penicillin in the late 1920s. However, the widespread use of antibiotics and limited research has resulted in the emergence of antimicrobial resistance, posing a global threat. To address this, developing new antibiotics is crucial. Vancomycin, a potent antibiotic isolated in 1955 and synthesized in the late 1990s, is a target for this purpose. Despite its effectiveness, vancomycin is challenging to produce, with yields not exceeding 5%. Thus, this project aims to create a structure in four steps, with a yield greater than 50% that resembles vancomycin’s iconic 3-D bowl shape.
CHEM2023OJEDAHERNANDEZ61683 CHEM
Type: Graduate
Author(s):
Leonardo Ojeda Hernandez
Chemistry & Biochemistry
Advisor(s):
Jeffery Coffer
Chemistry & Biochemistry
Giridhar Akkaraju
Biology
Location: Basement, Table 11, Position 2, 1:45-3:45
View PresentationPlatinum compounds play an important role as anticancer agents. Their ability to bind to DNA in the nucleus (by a process known as intercalation within DNA base pairs) result in DNA damage and cell death. Unfortunately, these platinum-containing compounds lack specificity toward cancer cells and attack normal healthy cells that results in significant side effects as a consequence (loss of hair, nausea, among others).
Our group has developed a method to incorporate platinum on the surface of our silicon Nanotubes using (3-Aminopropyl) triethoxysilane (APTES) as a functional arm to the Nanotubes. The Silicon nanotubes have attracted great attention in applications relevant to diagnosis and therapy, owing in part to its biocompatibility and biodegradability in cells.
Once inside the cell, platinum is released slowly, thus allowing an interaction with DNA. Our previous results using this technology showed significant toxicity on a type of cancer cell known as HeLa. While these findings are promising, specificity has not yet been achieved.
Cancer activates signaling pathways that translates on overexpression of specific proteins/receptors. Particularly, folate receptors (FR) are present in 90-98% of ovarian, prostate, uterus, breast, as well as some adenocarcinomas. FR expression is very limited in normal cells and generally not accessible to blood flow which makes it a suitable and promising system to target cancer. These receptors are glycopolypeptides that present high affinity for folic acid (FA).
A viable strategy has been identified, involving the conjugation of a molecule known as glutathione to act as a linker to the surface of the silicon-based platinum nanoparticles through N-Hydroxysuccinimide (NHS) activation, followed by substitution with folic acid.
The cellular evaluation of this material shown high cytotoxicity against Hela cells and selectivity, in compare with material without Folate.
CHEM2023PATTERSONGARDNER6470 CHEM
Type: Graduate
Author(s):
Casey Patterson-Gardner
Chemistry & Biochemistry
April Cannon
Chemistry & Biochemistry
Gretchen Pavelich
Chemistry & Biochemistry
Advisor(s):
Eric Simanek
Chemistry & Biochemistry
Location: Third Floor, Table 3, Position 2, 11:30-1:30
View PresentationPeptidomimetic macrocycles are of ever-growing interest to the field of pharmacology as candidates for inhibiting supposed "undruggable" sites (such as protein-protein interactions). An important property of pharmacophores within drug development is the partition coefficient (often expressed as logP or logD), which measures the ability of a molecule to partition between aqueous and organic media, effectively expressing the ability for a drug to diffuse into a cell from the bloodstream. Our group has previously synthesized several amino acid-containing triazine macrocycles through facile three-step procedure yielding folded, sometimes dynamic, macrocycles in good yields. With twelve macrocycles, a trend in logD values has emerged, allowing for the rapid prediction of the macrocyclic conformation per its respective logD values. Each macrocycle is folded, but the extent of triazine-triazine overlap, side chain van der Waals interactions, and shielding of its central proton is reflected in the divergence of the macrocycle's logD from a central trendline. The ability to predict the macrocycle's logD values via additive, atomistic, algorithms is also shown to reveal this divergent trend. Structures of these triazine macrocycles were elucidated through proton and nOesy/rOesy NMR.
CHEM2023SMITH4474 CHEM
Type: Graduate
Author(s):
Katherine Smith
Chemistry & Biochemistry
Cameron Bowers
Biology
David M. Freire
Chemistry & Biochemistry
Magy Mekhail
Chemistry & Biochemistry
Timothy M. Schwartz
Chemistry & Biochemistry
Advisor(s):
Kayla Green
Chemistry & Biochemistry
Location: Second Floor, Table 8, Position 1, 1:45-3:45
View PresentationOxidative stress is caused by the accumulation of reactive oxygen species (ROS) in the body and is
a key player in many maladies, including neurological diseases like Parkinson’s and Alzheimer’s disease.
Superoxide dismutase (SOD) metalloenzymess are capable of transforming the common ROS molecule
superoxide (O2) into less toxic species such as H2O or O2, thus protecting the body from harmful reactions of
superoxide. Synthetic metal complexes have shown promise as SOD mimics and can be effective alternatives
to therapeutic dosing of SOD enzyme for oxidative stress. In this work, we present a series of 12-membered
tetra-aza pyridinophanes (Py2N2) and the corresponding copper complexes with substitutions on the 4-position
of the pyridine ring. The SOD functional mimic capabilities of the Cu[Py2N2]Cl series were explored using a
UV-Visible visible spectrophotometric assay. Spectroscopic, potentiometric, and crystallographic methods were
used to explore how the electronic nature of the 4-position substitution affects the electronics of the overall
complex, and the SOD biomimetic activity of each complex’s activity as a SOD mimic. This work is an initial
step toward developing these Cu[Py2N2]Cl complexes as potential therapeutics for neurological diseases by
mimicking SOD’s capabilities and protecting the body from oxidative stress.
CHEM2023TA357 CHEM
Type: Graduate
Author(s):
Daniel Ta
Chemistry & Biochemistry
Jeanne Favret
Chemistry & Biochemistry
Ernesto Rodriguez
Chemistry & Biochemistry
Advisor(s):
Sergei Dzyuba
Chemistry & Biochemistry
Location: Second Floor, Table 5, Position 1, 11:30-1:30
View PresentationSquaraine dyes are a class of small luminescent molecules with diverse applications in physical sciences, medicine, and engineering. Although widely used, the current synthetic approaches are neither modular nor environmentally friendly. Therefore, this poster will present our efforts to develop facile, diverse, and efficient synthetic methods for squaraine dyes, based on green chemistry and sustainability principles.
CHEM2023THOMAS10203 CHEM
Type: Graduate
Author(s):
Shamberia Thomas
Chemistry & Biochemistry
Aisha Fahim
Chemistry & Biochemistry
Jenny Pham
Chemistry & Biochemistry
Advisor(s):
Onofrio Annunziata
Chemistry & Biochemistry
Location: Third Floor, Table 5, Position 1, 1:45-3:45
View PresentationYield of protein crystallization from metastable liquid-liquid phase separation
Aisha Fahim, Shamberia Thomas, Jenny Pham, Onofrio AnnunziataThe high demand in pharmaceutical and biotechnological products has motivated the need for economically sustainable alternatives to chromatography for protein purification. One promising alternative for protein purification is protein crystallization. However, protein crystallization is a complex, not well understood process. In our previous work, a new strategy for enhancing protein crystallization from metastable protein-rich droplets was examined. This requires the use of two additives. The first additive (inducer) promotes liquid-liquid phase separation (LLPS) in a protein aqueous sample. The second additive (modulator) alters the composition of droplets and their thermodynamic stability. A protocol for determining yields of LLPS-mediated protein crystallization was developed. This protocol was used to examine the effect of various inducer-modulator pairs on crystallization of lysozyme, a model protein.
ENSC2023DEOYARZABAL5254 ENSC
Type: Graduate
Author(s):
Manuel de Oyarzabal
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Environmental Sciences
Location: Basement, Table 8, Position 1, 1:45-3:45
View PresentationAs urbanization continues to fragment landscapes, wildlife become more isolated and find it harder to access the necessary resources to survive. Finding ways to connect fragmented landscapes is necessary for wildlife, but it is important to know what areas wildlife currently occupy. Trees provide valuable habitat for many species, but it is important to know what tree species are the most beneficial, and where these are located. This study used point locations of five tree species, bobcats, and coyotes to identify the density of each in Tarrant County. We identified that cedar elms have the most overlap with both bobcats and coyotes. The areas with high densities of cedar elms are the best for and bobcats, which is an indicator that they will be good for other species. Therefore these areas should be targeted for conservation and restoration.
ENSC2023DEOYARZABALBARBA55642 ENSC
Type: Graduate
Author(s):
Manuel de Oyarzabal Barba
Environmental Sciences
Advisor(s):
Tory Bennett
Environmental Sciences
Brendan Lavy
Environmental Sciences
Location: Basement, Table 9, Position 1, 11:30-1:30
View PresentationThe expansion of urban areas is a threat to wildlife because it fragments habitat and reduces the access to resources. Consequently, there is a need to improve the quality of urban habitats by increasing connectivity between habitats and resources. For volant species like bats, birds, and flying invertebrates, linear features such as tree-lines and/or connected canopies can create corridors that allow these wildlife to move along. In an urban environment, the structure of the urban forest (essentially all the trees in an urban area) can provide connectivity, if appropriate, thereby increasing access to resources and landscape permeability. Thus, in this study we used behavioral observation and acoustics surveys to monitor the commuting activity of bats in Fort Worth, Texas along 15 potential commuting routes. At each route, we measured tree height, percent canopy cover, gap distance, number of gaps, and rugosity or ruggedness of the canopy edge to identify what tree canopy features aided bat movement. Using GLM, we found that routes surrounded with more linear canopy cover and less gap distance resulted in more bats commuting. Moreover, we found that an increase in rugosity negatively influenced route use, as undulating tree canopies increased obstacles that created an inefficient commuting route (i.e., straight lines save energy). Our study demonstrates that the urban environment can be managed to increase connectivity and we provide recommendations on how to better manage the urban forest to increase commuting corridors for bats in this landscape.
ENSC2023DIXON47939 ENSC
Type: Graduate
Author(s):
Colin Dixon
Environmental Sciences
Advisor(s):
Michael Slattery
Environmental Sciences
Location: Second Floor, Table 6, Position 3, 11:30-1:30
View PresentationCurrently over 1,400 households use the Roubidoux Aquifer in Northeastern Oklahoma as their main source of drinking water. Additionally, the total water demand is projected to increase 56% from 2010 to 2060. This increase in water demand is concerning due to the Boone and Roubidoux aquifers being highly susceptible to surface contamination, containing elements such as lead and zinc, from the Tar Creek Superfund site located (TCSS) in Picher, OK. This study seeks to determine, using spatial analysis tools in GIS, the contamination susceptibility of the Boone and Roubidoux aquifer recharge zones as a result of direct surface contaminants and processes that facilitate their propagation.
ENSC2023GHIMIRE15290 ENSC
Type: Graduate
Author(s):
Binita Ghimire
Environmental Sciences
Advisor(s):
Gehendra kharel
Environmental Sciences
Esayas Gebremichael
Geological Sciences
Location: Third Floor, Table 6, Position 2, 1:45-3:45
View PresentationFlood is a major threat to many communities worldwide, despite many areas lacking flood hazard mapping due to data scarcity. Under such a scenario, remote sensing and GIS-based approaches could be a promising solution for assessing and characterizing flood hazard risk. Therefore, the objectives of this research project are to develop a flood hazard risk map for Rowlett Creek Watershed using remote sensing data and GIS (Geographic Information Systems) techniques to identify and evaluate flood risk areas over the study site. The research will involve development of complied flood hazard index (FHI) using GIS software based on flood causative factors such as slope, flow accumulation, drainage network density, distance from drainage channel, geology, land use/cover, soil moisture and rainfall intensity. Filed data of geology will be obtained from SSURGO and other data will be extracted from remote sensing product such as SRTM, NLCD, CROPCASMA and PERSIAN. The expected outcome of the research is the development of flood hazard risk thematic map and further verify it with the inundation area of a historical flood events in the study area, which will help to purpose proper mitigation and management strategies in flood-prone area. This research looks over a remote sensing and GIS-based approach for characterizing flood hazard risk, which will provide valuable information for policymakers, disaster management agencies, and other stakeholders working towards reducing the impact of floods even in data-scarce areas.
ENSC2023SCOTT7199 ENSC
Type: Graduate
Author(s):
I'Yanna Scott
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Gehendra Kharel
Environmental Sciences
Location: Third Floor, Table 9, Position 1, 11:30-1:30
View PresentationWater represents one of the required resources for wildlife to live and thrive in an area. Due to urbanization, we have seen an increase in the transformation of natural water sources (i.e. lakes, streams, and rivers) to semi-natural (i.e. retention ponds, reservoirs, and drainage ditches), for which we create for the urban infrastructure and for animals. The objective of the following study was to assess whether water quality influences the direct use of water sources by terrestrial wildlife in an urban environment utilizing bats as our indicator species. We, therefore, hypothesize that water sources with higher water quality will have an abundant and diverse community of bats using them (i.e., foraging and drinking), while lower quality water sources will have little to no bat activity and lower species diversity. We conducted this study using thermal cameras and acoustic monitoring to determine whether water quality has discernible influences for water resource use by bats at water sources across six urban parks and greenspaces in Fort Worth, Texas. We observed increased bat activity at water sources that were listed as areas with higher water quality standards with very slow moving water, and little activity in areas that have been known to have lower water quality. Understanding how the water quality of urban sources impacts bats, may not only be used as an indicator of water availability for other wildlife species in urban areas, but also provide insights into the environmental health of local parks and surrounding neighborhoods.
GEOL2023DARGE52617 GEOL
Type: Graduate
Author(s):
Yosef Darge
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Second Floor, Table 3, Position 1, 11:30-1:30
(Presentation is private)Sinkhole hazards pose a major threat to key infrastructure and human lives in Taylor and Jones counties in West Central Texas. These counties are underlain by soluble evaporite and carbonate rocks. In this study, a data fusion approach was adopted in which multi-source datasets and techniques were combined to detect and map the spatial distribution of sinkholes, quantify their displacement rates, and identify the processes and factors controlling their occurrence. Preliminary results indicate: (a) there is a spatial correspondence between depressions (area: 625 m2 - 2500 m2) identified using Light Detection and Ranging (LIDAR) datasets and previously- mapped sinkholes; (b) deformation rates over the mapped depressions derived using Persistent Scatterer Interferometry technique applied on 53 level-1 Sentinel-1 images (2016 – 2021) and calibrated using long-term (2006 – 2021) GNSS data indicate an average and peak subsidence rates of -6 mm/yr and +5 mm/yr, respectively; (c) clusters of high subsidence rates were noted over areas underlain by evaporites belonging to the Clear Fork Group; (d) efforts to validate the accuracy of the sinkhole detection techniques are currently underway using 2D Electrical Resistivity Tomography (ERT) surveys carried out on the identified subsiding depressions. In addition, groundwater level and discharge time series and other relevant datasets are being integrated to assess the processes and factors that induce the formation of these features. Results of this study could be used to develop an early warning system to implement mitigation strategies to curtail the impacts of the sinkhole hazards in Texas and other parts of the globe.
GEOL2023DARGE64533 GEOL
Type: Graduate
Author(s):
Yosef Darge
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: First Floor, Table 6, Position 1, 1:45-3:45
(Presentation is private)The Mendocino National Forest was affected by fire in August 2020. It devastated a substantial area of land over the period of three months, resulting in hundreds of millions of dollars in damage and the evacuation of thousands of people. Moreover, many of the local plantations were destroyed. To evaluate the severity of the impacted area for rehabilitation and restoration, severity data and maps are crucial. This study will combine several geospatial data including multitemporal remote sensing data to identify changes in forest structure and moisture content affected by the fires through burn severity maps. This study will use the Normalized Burn Ratio (NBR) technique to identify burned areas and provide a measure of burn severity. The NBR is calculated as a ratio between the NIR and SWIR values bands 5 and 7 obtain from pre-fire and post-fire Landsat 8 imageries. This will be followed by generating the Differenced Normalized Burn Ratio (ΔNBR) for pre and after-imageries to map the fire severity. The result of the NBR analysis will be integrated with the Normalized Difference Vegetation Index (NDVI) to map vegetation greenness over the study area that will be helpful to validate the accuracy of the NBR analysis. Moreover, elevation dataset (Digital Elevation Model (DEM)) will be used to assess factors that exacerbate emerging wildfires such as topography and slope.
GEOL2023GREGORY32187 GEOL
Type: Graduate
Author(s):
Gunnar Gregory
Geological Sciences
Richard Denne
Geological Sciences
Advisor(s):
Richard Denne
Geological Sciences
Location: Second Floor, Table 8, Position 3, 11:30-1:30
View PresentationThe greater East Texas Basin represents the portion of the Cretaceous Texas Shelf north of the San Marcos Arch, proximal to the Woodbine siliciclastics sourced from the Ouachita and Sabine uplifts. During the Early to Middle Cenomanian the basin underwent a time-transgressive transition from an oxygenated carbonate platform to an anoxic shelf. The Cenomanian-Turonian aged Woodbine and Eagle Ford Groups have been studied since the late 1800’s; a confusing nomenclature system has been developed for them due to outdated biostratigraphic studies and inaccurate age interpretations, obscuring the age relationships of the various lithostratigraphic units. To study this time-transgressive transition and better understand and define the Woodbine-Eagle Ford contact in north Texas, stratigraphic and X-ray Fluorescence (XRF) geochemical data will be collected from USGS near-surface cores drilled in Dallas and Grayson counties, and paired with X-ray diffraction (XRD), inductively coupled plasma-mass spectrometry (ICP-MS), and core spectral gamma ray data provided by the USGS, and biostratigraphic data provided by Denne. Field work will also be conducted on several outcrop locations in the Dallas-Fort Worth (DFW) Metroplex for detailed descriptions and measured sections to be made as well as sample collection for thin section, detrital zircon, and further XRF analysis. The data collected for this study will be used to lithostratigraphically and geochemically define the Woodbine-Eagle Ford transition zone in north Texas with the intent of determining the paleoceanographic conditions during deposition, and determine if this transition is time-transgressive across the DFW Metroplex and North Texas region.
GEOL2023ISHIMWE4070 GEOL
Type: Graduate
Author(s):
Benite Ishimwe
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: Basement, Table 3, Position 1, 11:30-1:30
View PresentationCurrent in-situ assessments of water quality in lakes can be significantly improved by leveraging recent advances in remote sensing and algorithm development for a faster and more cost-effective approach. This study leveraged satellite- (Landsat 7/8 and Sentinel-2) and UAV-based remote sensing datasets to detect and monitor changes in key water quality parameters (Chlorophyll-a (Chl-a) and turbidity) within the epilimnion of Lake Arlington (Texas) during the past 20 years. In addition, remote sensing algorithms were developed to capture the spatial variability of the water quality parameters across the entire extent of the water body. The investigation period was divided into two segments: before and after the EPA-established Watershed Protection Plan program (WPP) in 2012 to mitigate the lake's water quality deterioration. A regression model, using satellite-based and historical in-situ observations (2002 – 2020), was developed to predict the targeted water quality parameters across the extent of the lake. Our preliminary results indicate: (1) Chl-a levels at the lake's inlet decreased significantly after 2012 (before: 32.1ug/L; after: 9.2ug/l); also turbidity (via Secchi Disk Depth) across the lake decreased after 2012 (before: 0.6 m; after: 0.5 m); and the spring season had the highest levels of Chl-a followed by the summer season for both before and after 2012 while high turbidity values also coincided with high Chl-a values in the summer, (2) regression analysis revealed a high correlation between the in-situ Chl-a and Landsat (before 2012: spring R2 = 0.62, summer R2=0.66; p-value < 0.01; after 2012: spring R2 = 0.54, summer R2=0.73; p-value < 0.01) and Sentinel-2 bands (2015-2020: spring R2 = 0.99, summer R2=0.82; p-value >0.05). Similarly, the regression analysis revealed a high correlation (2015-2020: spring R2 = 0.98, summer R2=0.57; p-value >0.05) between reflectance from Sentinel-2 bands and in-situ turbidity levels; (3) The optimum spectral band to detect Chl-a was found to be between 590-880nm for Landsat and 665-940 nm for Sentinel-2 while for turbidity it was between 450-670nm for Landsat and 560-705nm for Sentinel-2. Therefore, Sentinel-2 bandwidth was better at detecting Chl-a and turbidity levels in the lake because of its wider bandwidth; (4) Water quality controlling factors in lake Arlington include landcover change, precipitation rates, and the EPA WPP measures. Landcover change between 2001 and 2019 shows an overall 25% increase in urban areas, a 9.5% increase in wetlands, and a 10.7% decrease in grassland which may have contributed to the decline in Chl-a and turbidity values. Finally, efforts to calibrate and improve the accuracy of the satellite-based observations are underway with UAV-acquired multispectral imagery obtained at the time of the Sentinel-2 overpass over the lake.
GEOL2023NUNEZ28170 GEOL
Type: Graduate
Author(s):
Ursula Nunez
Geological Sciences
Brooke Newell
Geological Sciences
Benjamin Strang
Biology
Kimberlee Whitmore
Biology
Advisor(s):
Essays Gebermichael
Geological Sciences
Omar Harvey
Biology
Location: Third Floor, Table 9, Position 2, 11:30-1:30
View PresentationIn Tarrant County, Texas, food deserts affect approximately 275,000 residents. Chronic health conditions affect households living in food-insecure communities, leading the government to spend billions of dollars treating preventable diseases. Implementing sustainable urban agriculture in areas of high need to produce food using geospatial technology to aid in soil management can play an important role in helping farmers. The objective is to create an urban soil analysis map from the data collected on the soil properties, distribution, and variability of how these properties affect landscapes.
GEOL2023PASTOR26697 GEOL
Type: Graduate
Author(s):
Ryan Pastor
Geological Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Location: First Floor, Table 3, Position 1, 1:45-3:45
View PresentationThe aim for this project is centered around understanding carbon sequestration and the potential for carbon capture, utilization, and storage (CCUS) in the United States of America. An in depth look at the CO2 emissions for given areas of the U.S. will be looked at to gain an idea of where localized hotspots for emissions are located and how the impact of these emissions can be reduced using CCUS. By coupling emission data with existing infrastructure data (such as active and abandoned wells, pipelines, storage facilities, etc.) an outlook on the possibility of CCUS and reduction of emissions can be achieved. Geologic formations also play a specific role in how CCUS works. Understanding the various rock formations below and how the injected CO2 will be sealed away deep in the ground is a vital piece for any CCUS project. Combining the geological data with the emissions and infrastructure data will piece together a variety of information to better understand the possibility of reducing carbon emissions in various areas around the United States.