Filter and Sort







NTDT2019SHELTON635 NTDT

The Effects of Parents' Perceptions of Food on Children's Eating Habits Later in Life

Type: Undergraduate
Author(s): Dalia Shelton Nutritional Sciences Charlie Tapken Nutritional Sciences
Advisor(s): Rebecca Dority Nutritional Sciences
Location: Session: 2; Basement; Table Number: 2

presentation location

Background: Much of the research associated with eating patterns of adolescents or young adults has been related to genetics, weight gain associated with parental influence of food selection, and children’s food choices relative to their parent’s desires. There is little research conducted on children’s perceptions of their parent’s food choices and how those beliefs correlate to their own dietary choices later in life.
Objective: The objective of this study was to determine whether parents’ perceptions of food had an effect on their children’s eating behaviors later in life. The hypothesis was that the food-related behaviors and beliefs of the parents strongly influence the child’s future dietary choices and lifelong relationship with food.
Methods: An online survey was developed that consisted of questions regarding student’s perceptions of their parents’ dietary choices and their own current dietary choices and beliefs. Researchers recruited participants via email and social media. Data was analyzed using SPSS.
Results: Among survey participants (N=158) there was a significant correlation (p<0.01) between the parent’s past eating behaviors and child’s current eating behaviors for several dietary patterns, including vegan, low carbohydrate, calorie counting and gluten free. Approximately 42% (n=66) of respondents reported that they were made aware of their weight at a young age. There was a strong correlation (p<0.01) between parents discussing weight and discouraging attempts to try new foods.
Conclusions: There was a significant correlation between the way that children view diet and nutrition and how their parents view diet and nutrition, as perceived by the children. Parents’ specific eating behaviors and discussions about weight also correlate with their children’s current eating behaviors and awareness of weight, although they may not currently live together. For more conclusive results, future research on the subject should also include data regarding parents’ perspective of their own food choices and beliefs.

View Presentation

PHYS2019BUESCHEL12591 PHYS

Modeling of parvovirus treatment of cancer

Type: Undergraduate
Author(s): Devina Bueschel Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 2nd Floor; Table Number: 4

presentation location

Rat Parvovirus is found in rat liver and can infect and cause changes in tumor cells. When tumor cells are infected, the cells can revert back to benign or uncancerous cells. We describe and analyze a mathematical model of infected and noninfected tumor cells when introduced to the parvovirus. Using nonlinear analysis, we find the conditions for cure of the tumor.

View Presentation

PHYS2019CAMPBELL56087 PHYS

Graphene Quantum Dots as Imaging, Sensing, and Delivery Agents

Type: Graduate
Author(s): Elizabeth Campbell Physics & Astronomy Giridhar Akkaraju Biology Roberto Gonzalez-Rodriguez Chemistry & Biochemistry Md. Tanvir Hasan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 2; Basement; Table Number: 10

presentation location

Graphene quantum dots (GQDs) are novel materials with a number of unique properties that can be applied in electronics, sensing and biotechnology. GQDs possess physical properties that are critical for biomedical applications, including small size (3-5 nm), high quantum yield, and pH-dependent fluorescence emission in the visible/near-infrared, providing a possibility of molecular imaging, and pH-sensing. They also show very low cytotoxicity suggesting high potential for multiple biomedical applications. GQDs can also be doped to form nitrogen doped graphene quantum dots (N-GQDs), sulfur doped graphene quantum dots (NS-GQDs) and boron nitrogen doped graphene quantum dots (BN-GQDs), which allow these optical properties to be adjusted. We utilize and modify these properties to yield a multifunctional delivery/imaging/sensing platform geared toward the analysis of cancer therapeutics delivery in vitro. In our work, we outline how GQDs can serve as potential drug transport agents and as molecular markers for imaging the delivery pathways. Optimal emission and excitation are selected for each quantum dot to minimize the autofluorescence of cells, allowing them to be imaged in vitro. Emission in healthy (HEK-293) and cancer (HeLa and MCF-7) cells is quantified for a variety of pH environments to identify the ideal conditions for cellular internalization and pH-sensing of acidic cancerous environments. In addition, in vitro fluorescence microscopy analysis provides quantitative assessment for accumulation in cells. The results of this work suggest GQDs as innovative and effective highly biocompatible multifunctional platforms for cancer therapeutics.

View Presentation

PHYS2019CERESA50306 PHYS

How to deal with inner filter effect in fluorescence experiments

Type: Graduate
Author(s): Luca Ceresa Physics & Astronomy Jose Chavez Physics & Astronomy Ignacy Gryczynski Physics & Astronomy Joe Kimball Physics & Astronomy
Advisor(s): Zygmunt Gryczynski Physics & Astronomy
Location: Session: 1; 2nd Floor; Table Number: 2

presentation location

Fluorescence is a very useful and popular technique which has been used in a wide variety of fields and, of late most importantly, at the intersection of biophysics, biochemistry and medicine. Despite being relatively simple from a theoretical point of view, it turns out that practical applications can have trivial problems that can cause significant spectroscopic problems. Specifically, an often overlooked yet fundamental obstacle in fluorescence spectroscopy is the nonlinearity of fluorescence intensity versus fluorophore absorption. This is referred to as the inner-filter effect. In literature, it is divided into a “primary inner-filter effect” and a “secondary inner-filter effect”. The former is caused by the absorption of the excitation light, which results in the lowering of the intensity of light reaching deeper regions of the solution. The latter is represented by the reabsorption of the emitted fluorescence by the fluorophores in the solution. Due to the fact that the primary inner filter effect is a direct consequence of the high concentration of the solution, to observe the secondary inner filter effect it is necessary to have a chromophore which absorbs part of the light that is emitted by the main fluorophore. Although working with low concentrations is generally recognized as a good practice to avoid artifacts related to inner filter effects, the primary inner filter effect can occur even at low absorbances (< 0.05). Furthermore, it is possible that using solutions with high absorbance is strictly necessary in studying the photophysical properties of fluorescent dyes and the interactions of biological macromolecules. Therefore, a reliable correction method for inner filter effects is fundamental for spectroscopic studies. Since it has been reported that the existing methods for correcting the fluorescence intensity are hard to implement in practice, we propose a strategy based on the previous calculation of the so called “sensitivity factor” of a spectrofluorometer. By mounting a cuvette on a movable holder in a square geometry setup, we can modify the position of the cuvette during a regular emission/excitation experiment. This allows us to determine the sensitivity factor. This result can be effectively used to correct the emission/excitation spectra to restore the linearity between absorbance and fluorescence intensity in samples characterized by high concentrations.

View Presentation

PHYS2019CHAVEZ34578 PHYS

Phosphorescence – Potential Biological Applications of Direct Excitation to the Triplet State.

Type: Graduate
Author(s): Jose Chavez Physics & Astronomy Luca Ceresa Physics & Astronomy Ignacy Gryczynski Physics & Astronomy Joe Kimball Physics & Astronomy
Advisor(s): Zygmunt Gryczynski Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 2

presentation location

Fluorescence has grown to be the most sensitive detection technique used in a variety of biophysical, biochemical and medical applications for several decades. However, there is an interesting luminescence similar to fluorescence which causes an “afterglow effect” (“glow in the dark”). This is called “phosphorescence”. Phosphorescence has an exceptionally longer lifetime (milli or microseconds) compared to fluorescence (nanoseconds). This can be up to a million times longer. Modern fluorescence lifetime measurements require sensitive detectors that cost several ten to hundreds of thousands of dollars, while a phosphorescence lifetime detector can be in the thousands range. This detector uses ocean optics spectrometry with a phosphoroscope to measure phosphorescence. With this application we want to use it for studying protein dynamics such as shape, spacing, binding, etc. The novelty for this approach is using tryptophan as a probe for direct excitation to the phosphorescence triplet state. This means the usual encounter of fluorescence there is a continuous light source. When exposed the sample will emit its fluorescence. Once removed from the light source, since fluorescence is so fast when decaying, will expire off. However, with phosphorescence, after the removal of the light source, the sample still emits. This procedure if successful will circumvent fluorescence and just achieve phosphorescence. To study this we will be using PVA (poly vinyl alcohol [plastic]) with 5,6 – Benzoquinoline, Indole, and Tryptophan where the first compound is confirmed to have phosphorescence able to be seen even with the naked eye at room temperature. These will be studied in a device that will measure phosphorescence called a fluorospectrometer (Varian Eclipse) and the phosphoroscope. With this information we can find out what color (wavelength) to excite the tryptophan and circumvent fluorescence to phosphorescence.

View Presentation

PHYS2019CIAMPA28285 PHYS

Massive Winds Triggered by Supernovae in the Large Magellanic Cloud Galaxy

Type: Graduate
Author(s): Drew Ciampa Physics & Astronomy
Advisor(s): Kat Barger Physics & Astronomy
Location: Session: 1; Basement; Table Number: 6

presentation location

Massive amounts of gaseous material are being ejected from the nearby Large Magellanic Cloud (LMC) due to supernovae explosions occurring inside the galaxy. These explosions influence how gas cycles in and out of a galaxy and is crucial for our understanding of how galaxies evolve. Being the nearest gas-rich galaxy, the LMC provides us with an excellent opportunity to explore this gas cycle in detail. We have combined spectroscopically resolved observations to investigate the influence supernovae have on the LMC gas and the connection between supernovae explosions and the currently flowing galactic wind.

View Presentation

PHYS2019DONOR55459 PHYS

Old Problems Require Modern Solutions: a Data-Driven Approach to Modeling Stellar Populations

Type: Graduate
Author(s): John Donor Physics & Astronomy John Wise Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Session: 2; Basement; Table Number: 7

presentation location

The problem of fitting isochrones, theoretical models of stellar populations, to the observed stellar populations (e.g. star clusters) has plagued observational astronomy for decades. A plethora of algorithms have been developed, but many fall short of their goals, and almost all are very computationally expensive. We present a new, computationally efficient technique made possible by first creating a fiducial representation of the data. This concise representation allows for a robust comparison to many theoretical models using a Markov-Chain Monte Carlo (MCMC) approach, quickly producing not only accurate fits but reasonable constraints on the final fitting parameters. The technique is applied to a number of star clusters, and the results are discussed in the context of Galactic chemical evolution.

View Presentation

PHYS2019FAIN18003 PHYS

Investigating viral transmission using an agent based model

Type: Graduate
Author(s): Baylor Fain Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 7

presentation location

A virus spreads through a body in two known ways: free cell transmission and cell to cell transmission. During free cell transmission, cells make viruses that diffuse throughout the body which may cause any cell that the virus touches to become infected. During cell to cell transmission, a virus spreads to a neighboring cell through an intercellular transfer. While previous research has investigated viruses based on free cell transmission, few models have incorporated cell to cell transmission leading to unclear results and bias to certain variables. This research accounts for both free cell and cell to cell transmission, using an agent-based framework. The model represents virus infection and spread in a two-dimensional layer of cells in order to generate total virus over time graphs for corresponding initial dose of virus.

View Presentation

PHYS2019HASAN44461 PHYS

Optical Properties Alteration and Photo-Voltaic Applications of Nitrogen-Doped Graphene Quantum Dots

Type: Graduate
Author(s): Md Tanvir Hasan Physics & Astronomy Roberto Gonzalez-Rodriguez Physics & Astronomy Conor Ryan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 2

presentation location

In this work, a simple/scalable microwave-facilitated hydrothermal route is used to produce nitrogen self-doped graphene quantum dots (NGQDs) from a sole glucosamine precursor. These NGQDs with average sizes of ~6nm show bright/stable fluorescence both in the visible and near-IR. The structural and optical properties of as-prepared NGQDs are further altered to provide control for optoelectronic applications by using ozone and thermal treatment. Thermal processing serves as controllable avenues to decrease GQD emission via anticipated reduction processes. Oxidative ozone treatment results in the decrease of GQD average size down to 5.23 nm and a more disordered structure due to the introduction of the new functional groups. Structural and optical characterization was performed utilizing TEM, AFM, SEM microscopy and FTIR, EDX, Raman, fluorescence, absorbance spectroscopy. FTIR, EDX and Raman data suggest that this processing introduces oxygen-containing functional groups, enhancing the atomic percentage of oxygen and increasing ID/IG ratio. Ozone treatment shows enhancement of visible emission which is observed from 0 to 16 min ozone processing with following over oxidation-induced defect-related quenching. On the other hand, a progressive increase in defect-related NIR emission is observed up to 45 min. Such alteration of optoelectronic properties enhances NGQD performance in photovoltaic devices.

Untreated NGQDs (Un-NGQDs) and ozone-treated NGQDs (Oz-NGQDs) are utilized as a photoactive layer to fabricate a variety of solar cells. Although devices with untreated NGQDs show performances similar to existing reports, Oz-NGQDs exhibit significant improvement (~six fold) with maximum PCE of 2.64%, an open circuit voltage of ~0.83V, a short circuit current density of 4.8 mA/cm^2, and an excellent fill factor of ~86.4%. This enhancement can be potentially attributed to the increased/broadened visible absorption feature in device state due to the efficient charge transfer between the hole-blocking layer of TiO2 and Oz-NGQD having enhanced concentration of functional groups. This work suggests ozone treatment as an easy and powerful technique to alter the optoelectronic properties of versatile and scalably produced NGQDs which can be successfully utilized as an eco-friendly photoactive layer to boost the photovoltaic performance of solar cells.

(Presentation is private)

PHYS2019HUEYYOU48564 PHYS

Exploring a system of coupled quartic oscillators with coupled cluster methods

Type: Graduate
Author(s): Carson Huey-You Physics & Astronomy
Advisor(s): Magnus Rittby Physics & Astronomy
Location: Session: 1; Basement; Table Number: 7

presentation location

Quantum mechanical oscillations of a many-body system about a local potential minimum can in a first approximation be modeled by a set of harmonic oscillators about a local potential minimum. In more sophisticated models one also has to consider anharmonic effects.
Here we present the first steps towards a systematic solution of ground and excited state energies for a set of coupled quartic oscillators using coupled cluster techniques. We present the general approach of the equation of motion coupled cluster (EOM-CC) method. We give illustrative details of the diagrammatic approach to obtaining our operating equations as well as the resulting EOM-CC equations for a simple system of coupled harmonic oscillators perturbed by a quadratic perturbation. We point to the connection with Bogoliubov transformations and finally we illustrate the numerical behavior of the EOM-CC non-linear iterations and matrix diagonalization of our effective Hamiltonian obtained with our Python code.

View Presentation

PHYS2019JHA46123 PHYS

Modeling polymerase inhibitor treatment of RSV

Type: Undergraduate
Author(s): Rashmi Jha Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 2nd Floor; Table Number: 5

presentation location

Respiratory syncytial virus, or RSV, is a virus that commonly causes lower respiratory tract infections throughout childhood and infancy. Most people who contract the virus recover within a short period of time, but it can cause respiratory illness, hospitalization, and even death within infants and the elderly. Agents that can effectively combat RSV are still not available for widespread clinical use, but one of the targets being investigated is PC786, a novel inhaled L-protein polymerase inhibitor. Using data from previous publications, we created models of the relationship between volume of PC786 and viral load in patients with RSV to try to determine how to best model the action of this drug.

View Presentation

PHYS2019LEE28437 PHYS

Investigating Modulation of Graphene Oxide Fluorescence via External Electric Fields

Type: Graduate
Author(s): Bong Han Lee Physics & Astronomy Fabian Grote Physics & Astronomy Thomas Paz Physics & Astronomy Conor Ryan Physics & Astronomy Alina Valimukhametova Physics & Astronomy
Advisor(s): Anton V. Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 5

presentation location

With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that unlike existing chemical approaches yield substantial alteration of GO structure. Such desired new technique is one that is electronically-controlled and lead to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modelling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/PVP films with up to 6% reversible decrease under 1.6 V/µm electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modelled on a single exciton level by utilizing WKB approximation for electron escape form the exciton potential well. In an aqueous suspension at low fields GO flakes exhibit electrophoretic migration indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.

View Presentation

PHYS2019MCCARTHY57534 PHYS

Effect of the Hill coefficient on estimates of drug efficacy

Type: Undergraduate
Author(s): Gabriel McCarthy Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 2nd Floor; Table Number: 6

presentation location

We are modeling the effect of the Hill coefficient on the volume of a tumor. This is to test drugs that may bind to multiple receptors and compare them to each other. We are using Python and used 4 main parameters and one equation. We modeled the Volume and the Dose Response Curves as well as the Emax and Ic50. We used the different positive Hill Coefficients and studied the effect on dose and carrying capacity.

View Presentation

PHYS2019MCKINNEY32467 PHYS

Nitrogen-Doped Graphene Quantum Dots and Reduced Graphene Quantum Dots for Intensity Luminescence Nanothermometry

Type: Undergraduate
Author(s): Tanvir Hasan Physics & Astronomy Bong Han Lee Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 4

presentation location

Non-invasive temperature sensing is necessary for the analysis of biological processes occurring in the human body including cellular enzyme activity, protein expression, and ion regulation. Considering that a variety of such biological processes occur at the microscopic scale, a novel mechanism allowing for the detection of the temperature changes in microscopic environments is desired. One-dimensional graphene quantum dots can serve as agents for such detection: they are promising non-invasive probes that because of their 2-5 nm size and optical sensitivity to temperature change enable sub-cellular resolution imaging. Both biocompatible bottom-up synthesized nitrogen-doped graphene quantum dots and quantum dots produced from reduced graphene oxide via top-down approach exhibit temperature-induced fluorescence variations. This response observed for the first time is utilized for deterministic temperature sensing in bulk suspension as well as inside mammalian cells. Distinctive quenching of quantum dot fluorescence by up to 19.8 % is observed, in a temperature range from 25℃ to 49℃, in aqueous solution, while the intensity is restored to the original values as the temperature decreases back to 25℃. A similar trend is observed in vitro in HeLa cells as the cellular temperature is increased from 25℃ to 41℃. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized graphene quantum dots can serve as non-invasive reversible deterministic mechanism for temperature sensing in microscopic sub-cellular biological environments.

View Presentation

PHYS2019MURPHY60207 PHYS

Understanding the Effect of Measurement Time on Drug Characterization

Type: Graduate
Author(s): Hope Murphy Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 1; Basement; Table Number: 1

presentation location

In order to determine correct dosage of chemotherapy drugs, the effect of the drug must be properly quantified. There are two important values that characterize the effect of the drug: ε_max is the maximum possible effect from a drug, and IC_50 is the drug concentration where the effect diminishes by half. We use mathematical models to estimate how the values depend on measurement time and model choice. Improper choice of growth model is problematic and can lead to differences in predictions of treatment outcomes for patients. This work intends to understand how choice of model and measurement time affects the relative drug effect and causes the differences in predictions for the most effective dose of anticancer drug for a patient. This work determines the correct doses before trying those in patients to get the most effective therapeutic treatment.

View Presentation

PHYS2019PHO52926 PHYS

Effect of Noise applied to Simulated Cancer Growth Model on the Error in Assessment of Anti-Cancer Drug Efficacy

Type: Undergraduate
Author(s): Christine Pho Physics & Astronomy Madison Frieler Biology Angel Guyton Biology
Advisor(s): Hana Dobrovolny Physics & Astronomy Giridhar Akkaraju Biology Anton Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 11

presentation location

New anti-cancer drugs are constantly being developed and tested. Effectiveness of these drugs is currently assessed by measuring the reduction in number of cancer cells cultured in experiments as a function of the applied drug dose. These measurements determine the drug dose needed to achieve half of the maximum reduction in cells (IC50) and the maximum effect of the drug (εmax). However, the technique that measures values of IC50 and εmax depends on the time chosen to make the measurements. We have developed a method to analyze the growth of cancer cells in different concentrations of drugs that will provide estimates of both parameters that are independent of measurement time. Here, we computationally simulated the growth of cancer cells according to a logarithmic model, adding different levels of noise. And, we found the error in IC50 and εmax as a function of the level of noise. Development of this new technique will lead to more consistent measurement of the efficacy of known and novel anti-cancer therapies.

(Presentation is private)

PHYS2019RAY53904 PHYS

Shooting for Star Cluster Chemical Abundances with The Cannon

Type: Graduate
Author(s): Amy Ray Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 1

presentation location

Star clusters are key chemical and age tracers of Milky Way evolution. The use of star clusters to provide significant constraints on galaxy evolution, however, has been limited due to discrepancies between different studies. This work seeks to add additional open clusters into an existing large, uniform chemical abundance system. We analyze spectra of giant stars in 31 open clusters and, using a machine learning method called The Cannon, determine iron abundances. This uniform analysis is compared with previous results, and we present new chemical abundances of 12 star clusters.

View Presentation

PHYS2019REEKS46081 PHYS

Does surface polarity of micro- and nano-scale ZnO particles contribute to antibacterial action?

Type: Graduate
Author(s): John Reeks Physics & Astronomy Tabitha Haun Physics & Astronomy Benite Ishimwe Environmental Sciences Bao Thach Engineering Jacob Tzoka Physics & Astronomy Kimon Vogt Engineering
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 4

presentation location

Antimicrobial action of micro- and nanoscale ZnO particles has been documented, but the fundamental physical mechanisms driving this action are still not identified . We hypothesize that one of the key mechanisms behind the antibacterial action of ZnO is rooted in interactions between ZnO surfaces and extracellular material. Crystalline structure of ZnO results in two distinct types of crystallographic surfaces: polar (charged) and non-polar (neutral). The excess charge and electronic states at the polar surfaces of micro- and nano-scale ZnO particles may affect interfacial phenomena with surrounding media. Therefore, it is feasible that the relative abundance of such polar surfaces could significantly influence their antibacterial action. In this study we use a hydrothermal growth method established in our lab to synthesize ZnO crystals with different controllable surface morphologies. We study the effects of relative abundance of polar surfaces on antibacterial action. These experiments performed in conjunction with optoelectronic studies of ZnO crystals yield information regarding the fundamental nature of their antibacterial action.

View Presentation

PHYS2019REEKS6818 PHYS

UV-driven stimulated hydrophilicity of hydrophobic polysulfone

Type: Graduate
Author(s): John Reeks Physics & Astronomy Tabitha Haun Physics & Astronomy Benite Ishimwe Environmental Sciences
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 4

presentation location

Polysulfone is a stable and strong semitransparent thermoplastic material that is applicable in many industries due to its resistance to low and high temperatures, as well as unique hydrophobic properties. Hydrophobic films are frequently used in waterproofing devices and to improve the efficiency of water vessels. It was recently discovered that polysulfone has a unique behavior as it changes from being hydrophobic to hydrophilic after exposure to a UV radiation. In order to elucidate the mechanisms behind this phenomenon we are performing surface photovoltage (SPV) studies on polysulfone thin films, which is done for the first time, to the best of our knowledge. Whereas SPV is sensitive to buried interfaces, SPV spectral features contain contributions not only from the polysulfone films, but from the silicon wafer and the silicon oxide layer beneath the polymer films. Thereby, to identify the signal germane to the polysulfone properly, we employ in our studies polysulfone films of varying and controllable thicknesses. To establish controllable methods for producing such films by spin coating, we use different concentrations of polysulfone in solutions with different spin rates. Film thickness is determined employing a thin film analyzer. From these thicknesses, trends are established relating film thickness to solution concentration and spin rate. SPV studies provide initial investigations into surface electronic transitions and mechanisms behind the hydrophobic ‘flipping’ of polysulfone.

View Presentation

PHYS2019RYAN42727 PHYS

Construction and Implementation of a High-Powered Multi-Laser Excitation System

Type: Undergraduate
Author(s): Conor Ryan Physics & Astronomy Tanvir Hasan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 1; 2nd Floor; Table Number: 6

presentation location

High-power laser excitation systems are critical in observing and studying nanomaterials and their optoelectronic properties on a single specie level. These systems enable inducing fluorescence and observing emission microscopically from individual flakes and or molecules. As the fluorescence of nanomaterials is often excitation dependent, multiple laser with different frequencies are needed to probe their optical properties. In this work we construct such multi-laser setup to use for a microscopy system to enable imaging nanocarbons: flakes of functional derivatives of graphene, carbon nanotubes, and graphene quantum dots.
The system is composed of four lasers of varying wavelength: blue at 450 nm, green at 532 nm, red at 637 nm, and near-infrared (NIR) at 808 nm. An additional near-infrared laser at 980 nm is included for special applications with deep NIR imaging. These lasers were set up to be turned on and off remotely and traverse through a system of dichroic and regular mirrors and a periscope coupled to a fluorescence microscope. A neutral density filter wheel designed and set up in the light path enables altering the intensity of the lasers leading to optimized fluorescence and imaging. The resulting laser set up allowed effective imaging of graphene oxide flakes, graphene quantum dots, and carbon nanotubes both on a microscope slide and in biological cells and tissues.

View Presentation

PHYS2019STONE31461 PHYS

Nanomaterials-Assisted Antibiotic Delivery

Type: Undergraduate
Author(s): Lindsey Stone Physics & Astronomy
Advisor(s): Dr Anton Naumov Physics & Astronomy Dr Shauna McGillivray Biology
Location: Session: 2; 3rd Floor; Table Number: 1

presentation location

The goal of this project was to engineer complexes of antibiotics and nanomaterials that address gram negative bacteria more efficiently than antibiotics alone. The gram-negative class of bacteria has two cell membranes, as opposed to the gram-positive class which has only one; this second membrane poses an additional challenge for antibiotic cell entry. Theoretically, the amphiphilic nanomaterials may aid the antibiotics by assisting them through both membranes and masking their entry. A number of nanomaterials were tested including graphene quantum dots, single-walled carbon nanotubes, and graphene oxide, and antibiotics including Penicillin, Methicillin, Amoxicillin, Norfloxacin and Linezolid were tested as well. Carbon nanotubes were supplemented with polyethylene-glycol coating agent, while water-soluble GQDs and graphene oxide were used as synthesized in our laboratory. The complex of the antibiotic Norfloxacin and Graphene Quantum Dots (GQDs) was selected as the most efficacious. It allowed killing of the gram-negative bacteria E. Coli at moderate concentrations significantly more efficiently than unaccompanied Norfloxacin. Its colocalization with bacteria was verified via high quantum yield (over 62%) intrinsic fluorescence of GQDs in the visible. This may lead to substantial improvement of antibacterial techniques against gram negative bacteria, increase in antibiotic efficacy, and potentially the recycling of antibiotics to which bacteria exhibit resistance.

(Presentation is private)

PHYS2019SUN49284 PHYS

The environmental effect on star formation in low-mass galaxies.

Type: Graduate
Author(s): Jing Sun Physics & Astronomy Kat Barger Physics & Astronomy
Advisor(s): Kat Barger Physics & Astronomy
Location: Session: 2; Basement; Table Number: 8

presentation location

The interaction between low-mass galaxies are of critical importance for the growth and evolution of galaxies. The star formation can be enhanced during interactions between massive galaxies, but very few studies focus on the interaction between low-mass galaxies. In this work, we explored the current star-formation surface density in both isolated and interacting galaxies and look for enhanced star formation during the interactions. A galaxy will be considered as a galaxy pair candidate if the physical separation between it and its closest low-mass galaxies is smaller than 5000 light years, otherwise it will be put into the isolate galaxy sample. This sample intentionally excludes galaxies with a massive galaxy neighbor nearby as massive neighbors can harass low-mass companion galaxies and can cause them to become quenched. This project is the first attempt to systematically study how the internal star-formation activities of low-mass galaxies are influenced by outer environment.

View Presentation

PHYS2019WEERASOORIYA61969 PHYS

Star Wells: Rise of Satellites

Type: Graduate
Author(s): Sachithra Weerasooriya Physics & Astronomy
Advisor(s): Mia Bovill Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 10

presentation location

Large galaxies are made up of smaller satellite galaxies. This makes these satellite galaxies crucial to understanding how stars form. Shallow gravity wells make them extremely sensitive to internal and external disturbances. Therefore, they are excellent laboratories to explore stellar physics. We use multi-body simulations of a Milky Way-like galaxy to explore the stellar properties of satellite galaxies surrounding a possible Large Magellanic Cloud (LMC). LMC is the largest satellite galaxy of the Milky Way. We compare the resulting properties such as chemical composition, light, radial distribution to observations from McConnachie et al. 2012.

View Presentation

PSYC2019AVELAR29440 PSYC

Relationship Specific Meaning in Life (MIL) Buffers Against Fear of Mortality

Type: Undergraduate
Author(s): Elidia Avelar Psychology Arielle Cenin Psychology Bryn Lohrberg Psychology Elise Martinez Psychology
Advisor(s): Cathy Cox Psychology
Location: Session: 1; 1st Floor; Table Number: 1

presentation location

Terror management theory is a theory that proposes mortality salience, or the awareness of the inevitability of death, is a motivating factor for maintaining faith in cultural worldviews and personal growth in value and self-esteem. Following mortality salience, people are more likely to interact with others and express satisfaction in relationships. Meaning in life (MIL) research is interested in examining the purpose and significance one feels in relation to their personal lives. Research has found that high MIL is associated with increased feelings of social connectedness and sense of belonging. (Baumeister & Vohs, 2002) The present research examined the link between mortality concerns, relationship MIL, and satisfaction/commitment within people’s romantic partners. In the research 369 participants ranging from ages 17-43 were asked to complete a lexical decision task that could be filled with death or neutral related words. Participants also completed a 5- item measure of relationship-specific MIL. Finally, participants completed a measure recording their relationship satisfaction. It was hypothesized that increased death awareness would lead to greater pursuit in MIL in people’s relationship with their romantic partner. The results showed that people with elevated DTA also have higher scores on relationship specific meaning in life. That is, higher DTA was related to greater search for meaning from relationships. This, in turn, was related to increased relationship satisfaction and commitment scores.

View Presentation

PSYC2019BENTLEY40614 PSYC

The Role of Death Concerns in the Use of Force Among Police Officers

Type: Undergraduate
Author(s): Hope Bentley Psychology Lexie Bryant Psychology Anita Pai Psychology
Advisor(s): Cathy Cox Psychology
Location: Session: 2; Basement; Table Number: 10

presentation location

From the perspective of terror management theory, reminders of death are problematic because they lead individuals to defend their cultural beliefs. Given that police officers are trained to see persons and situations as potentially dangerous (i.e., naturally occurring mortality salience), this may result in greater acceptance of the use of force. The current study examined police officers’ reactions to arrest vignettes and fear of death. Results suggest that increased death awareness predicted greater use of unnecessary force. These effects held while controlling for several individual differences that have previously been shown to influence use of force. These findings suggests that death concerns play an important role in how police officers respond to crime.

View Presentation