ENGR2019NIKOLAI12345 ENGR
Type: Undergraduate
Author(s):
Danny Nikolai
Engineering
Advisor(s):
Mike Harville
Engineering
Location: Session: 1; 2nd Floor; Table Number: 6
View PresentationA racecar’s suspension is one of the key contributors to its performance on a track. Each component – springs, shocks, links, etc. – can be dealt with as a variable within a mathematical model. There are hundreds of combinations of these variables, with each change affecting the stiffness ratio. Using the sway bar as the variable of interest, data acquisition, and computer modeling, a mathematical was developed for predicting the stiffness ratio as a function of sway bar diameter. This model can simplify the time-consuming iterative process that is “racecar setup” by allowing a race team to plug numbers into an equation to make predictions instead of conducting on-track test sessions to determine the results of each component change.
PDF: Attached to this email.
ENGR2019PRASAI24291 ENGR
Type: Undergraduate
Author(s):
Chris Prasai
Engineering
Mike Tran
Engineering
Advisor(s):
Morgan Kiani
Engineering
Location: Session: 1; 1st Floor; Table Number: 2
View PresentationIn our project, image tracking was employed to provide a honing mechanism for a robotic "scorpion tail" attached to a small Remotely Controlled Vehicle. The car will be controlled wirelessly through a web interface, with mobile phones being the target user. Like the Mario Kart Versus Mode, where multiple cars drive and bump into each other, the vehicle will be controlled wirelessly while the "tail" is actively seeking targets and upon close proximity will "pop" the balloon. Each car will have 3-5 balloons to start, and the objective of the tournament will be to hunt down the remaining cars and “pop” their balloons, until all cars lose their balloons and the victor remains with at least one balloon intact. Python and Google Cloud were used to make a server with for the mobile website, and C++ was used to relay the commands sent wirelessly to the vehicle's two DC motors. Image tracking was implemented using the popular computer vision OpenCV library in python. The research will conclude with a tournament on Pi day (March 22, 2019).
ENGR2019PRASAI45528 ENGR
Type: Undergraduate
Author(s):
Chris Prasai
Engineering
Michael Chau
Engineering
Armando Romero
Engineering
Mike Tran
Engineering
Advisor(s):
Morgan Kiani
Engineering
Location: Session: 2; 1st Floor; Table Number: 2
View PresentationIn our project, we aimed to design an autonomous rover similar to that of the popular Mars rovers such as Curiosity. Our rover employs a differential drive system with two continuous rotation servo motors that are controlled with the popular ROS robotic programming library in C++ and Python. A navigation algorithm employs the known position of the robot gathered from a magnetic encoder on the motors and the multiple optical range fidners placed around the vehicle to avoid obstacles on route to its destination. A camera is employed to detect target objects for simple pick-and-place tasks using its DC motorized gripper placed at the front of the vehicle. We have successfully built this vehicle and will demonstrate its capabilities at the 2019 IEEE R5 robotics competition in Lafayette, Louisiana as well as at the SRS presentation day.
ENGR2019STANEK50106 ENGR
Type: Undergraduate
Author(s):
Hannah Stanek
Engineering
Emma Birbeck
Engineering
Advisor(s):
Stephen Weis
Engineering
Location: Session: 1; Basement; Table Number: 9
View PresentationRotating Precision Mechanisms, Inc. (RPM) requested that TCU Senior Design update their current Laser Position Accuracy Test Set, which utilizes a laser to calibrate rotating pedestals. RPM positions this test system at a range of distances from a rotating mirror, passes a laser beam through an optical system to the rotating mirror, and measures the offset of the reflected laser dot in order to test the pointing accuracy and repeatability of their positioners. RPM requested that the redesigned test set deliver a reflected laser dot size within 0.125 inches when the test system is any distance between 10 and 100 feet from the rotating mirror. Our prototype for the redesigned Laser Position Accuracy Test Set relies on an optical component called a beam expander to cleanly extend the laser beam at the desired dot size over the specified range of distances. In order to design and manufacture this beam expander, our team researched optical collimators, beam expanders, and lenses in addition to using an Optical Ray Tracing software to model potential beam expander designs. After constructing and testing a working prototype, we completed several iterations in order to improve the resulting laser dot size. Finally, we compared our beam expander design to an Edmund Optics research grade beam expander to further quantify the success of our design.
ENGR2019THACH59309 ENGR
Type: Undergraduate
Author(s):
Bao Thach
Engineering
Sam Adams
Engineering
Ben Krause
Engineering
Irene Kwihangana
Engineering
Chris Prasai
Engineering
Advisor(s):
Morgan Kiani
Engineering
Location: Session: 2; 3rd Floor; Table Number: 4
View PresentationIn our project, a control-theory based algorithm would be employed to develop a small electric vehicle that can self-navigate through an unknown course to arrive at the desired location while avoiding obstacles and walls. This project is an extension of our successful project funded last year, in which we were able to operate a partially autonomous car to run around a location, and generate a virtual map. Our team expects to grant the car full autonomy like a self-driving car and let it travel through a relative abundance of places to create computer models of critical infrastructures without the help of humans. The success of this project will have a broad impact on society. First, this capability would be useful in self-driving cars, which allow drivers to spend their time more productively instead of driving to work or assist disabled people. Second, the car can generate a simulated model of places that help to analyze unknown locations. Finally, the project can surely create a platform for future TCU engineering students to learn about self-driving car technology and machine learning. This project is expected to succeed due to the achievements we gained from the previous project.
The algorithm will be written in Python/ROS, controlled by Raspberry Pi 3, and tested on a walled course constructed by us. It should be able to navigate a course, without having already driven through it. Another special feature is that the car will also precisely arrive at a pre-determined location.
ENGR2019WHITE19751 ENGR
Type: Undergraduate
Author(s):
Caydn White
Engineering
Advisor(s):
Stephen Weis
Engineering
Location: Session: 1; Basement; Table Number: 3
View PresentationFlatfoot and cavus foot are postural issues that affect approximately 40% of people and can be corrected by means of orthotic inserts for shoes. A digitally reconfigurable mold is being developed as a tool for orthotists to visualize and fabricate orthotic inserts. The surface will be formed by an array of solenoid actuators controlled by the orthotist. The patient will stand on the reconfigurable surface while the orthotist evaluates the patient’s needs by manipulating the surface. Once the orthotist is satisfied with the array, the surface position will be held by a clutch system, so the patient can step off the surface and the surface positions can be recorded. This work describes my development of a prototype mechanical clutch for the digitally reconfigurable surface. The result of this project is a proof-of-concept design of an array of twenty-five physical clutch points which may be individually addressed by means of servo motors controlled by an Arduino microcontroller. With the development of this prototype, it is believed that such a control interface could be implemented on a system large enough for an adult human to stand on. This proof-of-concept is a small step in a larger project of developing a full-scale reconfigurable surface by which an orthotist could create posture correcting devices.
ENSC2019BARBARA55254 ENSC
Type: Undergraduate
Author(s):
Makenna Barbara
Environmental Sciences
Advisor(s):
Becky Johnson
Environmental Sciences
Becky Bittle
Engineering
Tamie Morgan
Geological Sciences
Location: Session: 1; Basement; Table Number: 4
View PresentationUrban Heat Islands (UHI) describe a phenomenon of increasing ambient temperature in densely built areas of cities as compared to rural areas. Impervious cover, ubiquitous in urban areas, appears to absorb solar radiation and reemit that radiation as heat. Urbanization and UHIs have impacts that range from local to global scales and can be found in cities of all sizes and climatic regions (Fernando 2013). This study focused on Tarrant County, Texas and analyzed changes in impervious surface cover and average monthly temperatures at four different NOAA weather monitoring stations over approximately 60 years in a search for urban heat island effect. Temperature analysis indicates an increase in temperature over the 60-year period. This study aims to determine whether that temperature increase is due to UHI.
ENSC2019DUCHARME26150 ENSC
Type: Undergraduate
Author(s):
Claire Ducharme
Geological Sciences
Advisor(s):
Tamie Morgan
Geological Sciences
Location: Session: 1; Basement; Table Number: 3
View PresentationThe Urban Heat Island effect, or UHI, describes a phenomena involving heighted temperature indices in metropolitan areas when compared to surrounding rural landscapes. An increasingly relevant area of study following the advent of global warming, today, the associated “infernos” plaguing urban landscapes across the globe have the capacity to seep beyond concrete jungle walls, to reap havoc on once lush and vibrant vegetation and ecosystems. The following analysis combines an understanding of the Urban Heat Island effect with Remote Sensing technologies and Landsat Aerial Imagery to uncover the impact of urbanization in Seattle, Washington. With an emphasis on illustrating change over time, historical data surrounding imaging and climate trends further support this GIS analysis of vegetation in Seattle.
ENSC2019HALL12981 ENSC
Type: Graduate
Author(s):
Ellen Hall
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Tamie Morgan
Geological Sciences
Location: Session: 1; 1st Floor; Table Number: 1
(Presentation is private)Bats are critical to their surrounding environment, thus we need to know what resources bats need to survive, such as water. Many available water resources in urban areas are ephemeral and dry up during the hot Texas summers. We explored bat resource use in an urban environment by radio-tracking bats in local Fort Worth parks, Foster Park and Overton Park. We used Lidar and 3D mapping in ArcGIS 10.6 to portray our study site where bats were tracked. Using digital elevation, we evaluated high elevation points in the parks that can be used in conducting future surveys.
ENSC2019HINTON16070 ENSC
Type: Undergraduate
Author(s):
Reed Hinton
Environmental Sciences
Advisor(s):
Tamie Morgan
Geological Sciences
Location: Session: 1; Basement; Table Number: 9
(Presentation is private)Water resources are critical to areas experiencing urbanization and a rapidly increasing population. The depletion of these resources due to either human usage or environmental factors has the potential to lead to water scarcity in surrounding areas. A GIS analysis was conducted on Lake Mead near Las Vegas to assess the change in water level over time.
ENSC2019HOOD26539 ENSC
Type: Graduate
Author(s):
Adam Hood
Biology
Advisor(s):
Tamie Morgan
Geological Sciences
Location: Session: 2; 3rd Floor; Table Number: 9
(Presentation is private)Healthcare deserts are an emerging problem in the United States, especially in rural areas. Individuals in these areas do not have access to adequate healthcare, and in most cases they are forced to travel long distances to receive the care they need. In the Permian Basin, this can be of concern for those working in the oil industry as well as their families. A GIS analysis was conducted to identify healthcare deserts in this area.
ENSC2019HUDGENS33438 GEOL
Type: Graduate
Author(s):
andrew hudgens
Geological Sciences
Advisor(s):
Tami Morgan
Geological Sciences
Location: Session: 2; Basement; Table Number: 2
View PresentationMonarch butterfly populations in North America have declined by approximately 80% over the last 20 years. Many contributing factors are responsible for this decline, however the loss of Milkweed has been identified as a major factor. Milkweed is the primary food source for Monarch caterpillars. A GIS analysis was performed to identify milkweed resources in the North Texas area.
ENSC2019LAM12347 ENSC
Type: Undergraduate
Author(s):
Amy Lam
Environmental Sciences
Olivia Jones
Environmental Sciences
Todd Longbottom
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Session: 1; 3rd Floor; Table Number: 8
(Presentation is private)Coffee is one of the most popular drinks in the world. Americans generate on average 12600 tons (around a thousand school buses) of coffee grounds per day – which is most often landfilled. This typical waste stream represents a potential feedstock for developing carbon-based materials with applications across numerous disciplines. For example, initial research in Dr. Harvey’s Lab on spent coffee grounds, received from Avoca Coffee Roasters in Fort Worth, has shown that charring the grounds at 350 ℃ improved its Lead removal abilities. Our research will build upon this previous research by conducting more controlled studies to evaluate those earlier results and determine the optimal charring temperature for producing charcoals for water filtration applications. Since we had no control over how the previously donated coffee grounds were brewed by Avoca Coffee Roasters, we decided to design an experiment that will give us more control over the brewing process. The coffee beans were obtained from Avoca Coffee Roasters and brewed according to the Golden Ratio. We will also study the surface properties of charred coffee grounds produced at 350 ℃, 450 ℃, and 650 ℃ from Ethiopian and Mexican coffee grounds.
ENSC2019MARTINEZ48752 ENSC
Type: Graduate
Author(s):
Julianna Martinez
Biology
Advisor(s):
Michael Misamore
Biology
Tamie Morgan
Geological Sciences
Location: Session: 2; Basement; Table Number: 3
(Presentation is private)Zebra mussels, Dreissena polymorpha, are an invasive species of freshwater bivalves that have recently spread into bodies of water across North America. Zebra mussels inhabit the shallow waters of lakes and tightly attach to any and all hard surfaces. They are efficient filter feeders and can filter up to 1 L of water per day per mussel. This increases the clarity of water dramatically which alters the lake habitat for other lake species. In this analysis, water clarity data was mapped for “infested” lakes for the years 2008 (pre-zebra mussels), 2010 (one year after zebra mussel infestation), and 2016 (seven years after infestation). The average clarity of the lakes increased by 9.36%, with larger lake clarity increasing the most dramatically.
ENSC2019MCQUEEN16945 ENSC
Type: Graduate
Author(s):
Martin McQueen
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Location: Session: 1; 3rd Floor; Table Number: 7
View PresentationHabitat loss, disease, and land-use change has led to a sudden decline in bat populations in the US. Thus, there is a need to determine the extent of the impact before we can effectively implement counter-measures. One way to assess the impacts is to monitor areas with a high abundance and species diversity, such as Big Bend National Park with 25 of the U.S.’s 47 native bat species. We therefore assessed whether 1) acoustic monitoring at the park was a feasible technique and 2) if the diversity of species recorded and their activity patterns could contribute to national long-term monitoring.
ENSC2019NIYITANGAMANZI41060 ENSC
Type: Undergraduate
Author(s):
Aurore Niyitanga Manzi
Environmental Sciences
Advisor(s):
Tamie Morgan & Dr. Omar Harvey
Environmental Sciences
Location: Session: 2; 3rd Floor; Table Number: 5
View PresentationA GIS and remote sensing analysis of Rwanda was conducted to analyze changes in land cover, urbanization, and croplands over time. Data mapping changes in major crops productivity throughout time was also analyzed and combined with information on elevation and soil conditions. All factors were analyzed to identify the location and suitability of soils for each major crop.
ENSC2019PAYBLAS51093 ENSC
Type: Graduate
Author(s):
Caitlin Payblas
Environmental Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Session: 1; 1st Floor; Table Number: 2
View PresentationNitrate contamination of groundwater in the Seymour Aquifer is a well-known issue that has been documented since the 1960's. Concentrations as high as 35 ppm NO3-N have been reported, which is a startling 3.5 times the EPA allowable standard for drinking water. While most water from the Seymour Aquifer is used for agricultural irrigation, a portion is still used for domestic purposes and therefore poses a risk to human health. While this problem may have been recognized, the specific source of this contamination remains unknown. Three potential sources of nitrate within the aquifer are being considered in this study—the geological makeup of the aquifer, the agricultural contribution of nitrate from fertilizers, and the historical land use change of the area above the aquifer.
My research will combine various statistical and geospatial technologies in order to 1) view nitrate contamination as a function of well depth and 2) Determine the temporal change in NO3-N concentrations over a distribution of well depth. Readily available groundwater quality data from the Texas Water Development Board will be used in conjunction with geospatial analysis and statistical analysis to identify well depth distribution and changes in the aquifer's water quality with respect to well depth over time. After a thorough analysis of the site area via the aforementioned methods and technologies, a portrait that depicts the both spatial and temporal changes of nitrate contamination in Texas's Seymour Aquifer ought to be painted.
ENSC2019PORTILLO33835 ENSC
Type: Undergraduate
Author(s):
Jacob Portillo
Environmental Sciences
Kelby Caplinger
Environmental Sciences
Michaela Donahoo
Geological Sciences
Dorothy Gilliam
Environmental Sciences
Ella Hellessey
Environmental Sciences
Wyly Lincoln
Environmental Sciences
Aurore Manzi
Environmental Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Session: 2; 2nd Floor; Table Number: 8
View PresentationThe long term effects of urbanization on soil properties in Fort Worth, Texas remain largely unknown, making future predictions of soil health and the development of environmentally beneficial practices difficult. The rapid expansion of the Fort Worth Metroplex begs the question of how can cities best prepare for or mitigate the effects of disturbance due to construction and constant lawn care. In order to understand how soil properties change with time after an initial disturbance, many different methods were implemented to quantify and qualify the different stages of post-urbanized recovery in order to find the trend the soils at the houses of varying age ranges took relative to the natural area. Overall, the soil properties trended towards recovery and the deviation from the natural park area decreased as the houses increased with age. The only variable that did not follow this trend was amount of organic matter at each site, which was determined to be affected uniquely by lawn care and the continued use and accumulation of nutrients from fertilizer applications. These results can be used to identify and understand the effects caused by future construction projects and possibly be used to establish more sustainable development in the DFW area.
ENSC2019SMITH22883 ENSC
Type: Graduate
Author(s):
Kathryn Smith
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Location: Session: 1; 3rd Floor; Table Number: 5
View PresentationTelemetry is an effective method for collecting movement data, however, transmitters have the potential to negatively impact the maneuverability and behavior of wildlife, particularly volant species. Despite concerns, no studies have assessed the potential effect of transmitters on bats. Thus, we conducted a behavioral study on evening bats (Nycticeius humeralis) in a controlled environment. We found that while there was not a decrease maneuverability, it did alter behavior. Bats flew 79.5% less with the transmitter attached. Furthermore, these impacts did not diminish over time (3 day period), which in turn could have consequences for telemetry survey data collection and interpretation.
ENSC2019WINER65351 ENSC
Type: Graduate
Author(s):
Zane Winer
Biology
Advisor(s):
Tamie Morgan
Geological Sciences
Location: Session: 1; 3rd Floor; Table Number: 2
(Presentation is private)Urbanization is a central theme to humanity’s progress in large metropolitan areas. However, desire for greenspace and nature are also shown to be integral for citizen happiness and peace. At what rate does urbanization occur within a small area of DFW that is often considered suburban? Is this urbanization mostly residential or is this the fault of corporate land usage? This study uses GIS to investigate the differences over time in natural spaces vs. manmade structures by looking at differences in vegetation to assess the rate of urbanization in one of the most quickly developing areas in Texas.
GEOL2019CAVES50910 GEOL
Type: Graduate
Author(s):
Lindsay Caves
Geological Sciences
Advisor(s):
Rhiannon Mayne
Geological Sciences
Location: Session: 1; 1st Floor; Table Number: 5
(Presentation is private)Mesosiderites are meteorites composed of equal parts metal and crustal silicate material, which have been linked to the HED parent body 4Vesta. The metal portion of mesosiderites is also compositionally similar to the IIIAB irons. Mesosiderite silicates were mixed with metal, recrystallized and rapidly cooled. The slow metallographic cooling rates recorded by mesosiderite metal indicate mixing followed by deep burial within an asteroidal body. Several models for the formation of mesosiderites have been proposed, but no single model can completely explain their multi-stage history. Oxygen isotope compositions of mesosiderites and eucrites are identical, consistent with the HEDs and mesosiderites originating from a common parent body. However, there are notable differences between the two groups. These include the differing Fe-Mn-Mg systematics in mesosiderite pyroxenes, which reflect an FeO reduction trend and not the magmatic trend seen in the HEDs. Phosphates and tridymite are also more abundant in mesosiderites than howardites and eucrites. These differences have been attributed to redox reactions that occurred during the metal-silicate mixing stage of mesosiderite formation. As previous work focused mainly on the silicate portion, this study examines the metal of five mesosiderite samples of varying petrologic class and degree of metamorphism. Thick sections of each meteorite containing both matrix metal and metal nodules were requested on loan from the National Meteorite Collection, located in the National Museum of Natural History, Department of Mineral Sciences. Electron microprobe (EMP) analyses of both silicate and metal portions of each mesosiderite were collected, as well as LA-ICP-MS analyses of the matrix metal and metal nodules within each section. The dataset will be analyzed for evidence of redox reactions and other processes that may have been occurring during the metal-silicate mixing phase of mesosiderite formation. If redox reactions occurred between the metal and silicate portions of mesosiderites, then: 1) the matrix metal within mesosiderites may be depleted in readily oxidizable elements (e.g. P, W) relative to the metal nodules that are not in contact with the silicate phase; or, 2) all metal in mesosiderites is depleted in readily oxidizable elements. This depletion should be visible when compared to IIIAB irons of a similar composition.
GEOL2019DEBONE30636 GEOL
Type: Graduate
Author(s):
Kristin DeBone
Geological Sciences
Tamie Morgan
Geological Sciences
Advisor(s):
Richard Hanson
Geological Sciences
Location: Session: 2; Basement; Table Number: 8
(Presentation is private)Recent field work has discovered a volcanic complex within the Paleocene Black Peaks Formation in the northwestern part of Big Bend National Park in west Texas. This is the only known Paleocene volcano in west Texas. We have identified pyroclastic deposits consisting of ash-sized and coarser clasts, including volcanic bombs and blocks, which were erupted explosively from a nearby vent. Margins of the volcanic complex have been mapped using remote sensing because the volcanic rocks are distinctly different in color from the adjacent shale. Characteristics of the pyroclastics suggest derivation from phreatomagmatic eruptions, which occurred when magma and groundwater violently interacted in the shallow subsurface.
GEOL2019DONAHOO65357 GEOL
Type: Graduate
Author(s):
Michaela Donahoo
Geological Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Session: 2; 3rd Floor; Table Number: 7
View PresentationUsing Non-Invasive Geophysical Techniques in Near-Surface Infrastructure Planning and Management
Michaela Donahoo1, Karim Ouamer-ali2,3, Youcef Daoud2, Kaddour Djili3, Omar R. Harvey1
1Department of Geological Sciences, Texas Christian University, Fort Worth, Texas, USA.
2 National Institute of Agronomic Research of Algeria (INRAA), El-Harrach, Algeria.
3Ecole Nationale Supérieure Agronomique (ENSA), El-Harrach, Algeria.Understanding soil characteristic variability geospatially as a function of depth and time is key to the optimal implementation of subsurface infrastructure planning and expansion. The soils physical behavior as well as its interaction with piping and road materials determine where such a system could divert and predict future maintenance frequency. Central to the development of site-specific, precision management strategies is the quantification and mapping of the geospatial variability in soil properties at significantly higher resolutions than provided in current soil surveys. The presentation will cover results from ongoing collaborative research efforts between researchers at Texas Christian University and two Algerian institutions in using non-invasive measurements of bulk apparent electrical conductivity (ECa) to quantify and map 3-D soil variability in semi-arid and arid areas of Algeria, Northern Africa. The focus will be on the derivation and application of depth-specific ECa-ECe (saturated paste), ECa-clay content and ECa-water content relationships for use in understanding seasonal salinity and water dynamics within potential depths of construction interest.
GEOL2019LAMB52985 GEOL
Type: Graduate
Author(s):
Grayson Lamb
Geological Sciences
Advisor(s):
John Holbrook
Geological Sciences
Location: Session: 1; 3rd Floor; Table Number: 9
(Presentation is private)The fundamental understanding of any geologic basin stems from ascertaining the relationship between its source and sink. Every basin is therefore identified as a “sink” and has a provisional “source.” The investigation of this fundamental relationship is the preliminary exploration step to further basin development.
The Late Triassic Dockum Group of the west Texas high plains is an understudied group that begs investigation into the source to sink relationship. A comprehensive study of the Dockum Group as a “sink” is here undertaken in order to better understand the paleoclimate and its implications on the Dockum group depositional style. This study focuses on the northern most section of the Dockum group outcrop system. Within the study area it is subdivided into three main formations, the Tecovas mud, Trujillo sand, and Cooper Canyon sand-mud mix system.
This study showcases a forward stratigraphic modeling software, Dionisos Flow. From field based outcrop work: grain size, channel thickness, water discharge, and lithofacies assemblages were quantified as model inputs in Dionisos Flow.
The study aims to model Dockum Group sedimentation in order to determine the plausible paleoclimate, and its related depositional environment and depositional style. To do so, an outcrop study and fluvial architecture analysis was completed to serve as model input variables. Then a forward stratigraphic Dionisos Flow model of the three main Dockum Group formations was generated. It was then analyzed and coupled with the outcrop study to draw conclusions on the necessary Triassic climate conditions to produce the Dockum Group deposits.
Per the modeling exercise and outcrop study it is concluded that the Triassic climate was highly variable, shifting between semi-arid to humid. Its variability has been underemphasized in previous studies. Climate alterations are on a scale of 103 years. Additionally, the Dockum Group’s sedimentation style has been a forum of contradicting theories. This study has concluded that Dockum sands were deposited in a predominantly upper flow regime environment during humid climate cycles, while its abundant muds were deposited in lower flow during semi arid climate cycles.
GEOL2019LAURENTI12129 ENSC
Type: Graduate
Author(s):
Alec Laurenti
Environmental Sciences
Advisor(s):
Omar Harvey
Geological Sciences
Location: Session: 1; Basement; Table Number: 13
(Presentation is private)Iron oxides have a controlling effect on how carbon and contaminants move through the which has impacts on climate change and pollution. Carbon held more tightly to the soil can be sequestered for longer periods of time. These tightly held contaminants are less of a threat to spread and impact groundwater. The driving factor in the movement of these compounds are the binding-debinding energies. This study will use flow adsorption microcalorimetry to systematically analyze the energetics and bonding dynamics involved in different combinations of iron oxides and organic molecules of varying carbon chain lengths (along with the presence of amine functional groups). This will allow us to isolate the effect that these different chain lengths have as well as the presence of amine functional groups. The study will focus on the systematic collection and analysis of experimental data that can be used to support the development, validation, and refinement of computational models of interactions involving natural organic matter at the metal oxide-water interface while facilitating the further development of experimentally-driven understandings of binding-debinding dynamics of organic molecules onto mineral surfaces.