Filter and Sort







CHEM2023WORTLEY11374 CHEM

Fabrication and Characterization of BiVO4-Based Electrodes for Use in Photoelectrosynthetic Applications

Type: Undergraduate
Author(s): Jacob Wortley Chemistry & Biochemistry
Advisor(s): Benjamin Sherman Chemistry & Biochemistry
Location: Third Floor, Table 3, Position 1, 1:45-3:45

Light-driven reactions, such as those utilized in photoelectrosynthetic applications, focus on capturing and transferring light energy to drive chemical reactions. For this purpose, light-active metal oxide semiconductor materials are used, such as BiVO4, 𝛼-Fe2O3, and WO3 to list a few. Previous work demonstrated the use of BiVO4 electrodes to drive the oxidation of benzyl alcohol to benzaldehyde in the presence of a TEMPO (2,2,6,6-tetramethylpiperidine) mediator.1 This study seeks to improve the photoelectrochemical performance of this reaction by using a heterojunction WO3-BiVO4 electrode. We hypothesize that the heterojunction would decrease charge carrier recombination and improve the photochemical yield of the reaction compared to a BiVO4 electrode.2,3 The WO3-BiVO4 interface forms a type II band alignment allowing electrons from photoexcited BiVO4 to transfer into WO3 and holes to accumulate at the BiVO4-electrolyte interface.4 Two techniques, UV-visible spectroscopy and incident photon-to-current efficiency (IPCE) measurements, were applied to better understand why the heterojunction improved the photocurrent density in the presence of reaction components in solution. UV-visible spectroscopy was used to determine the band gaps of the materials. Information about the efficiency of light energy conversion to chemical energy was obtained by IPCE measurements. IPCE values are determined by relating the proportion of incident light power to the current produced by illuminating the WO3­-BiVO4 photoanode over a small wavelength range. Photoanodes exhibiting higher IPCE % are more effective at driving photoelectrosynthetic reactions.1 To test the effect of WO3 on the energy conversion efficiency, IPCE experiments were run for the WO3-only, BiVO4-only, and WO3-BiVO4 samples. Comparing IPCE values for WO3-BiVO4 samples shows a clear increase compared to BiVO4-only photoanodes. These results demonstrate how coupled materials (WO3-BiVO4) can generate higher current densities upon illumination for driving photoelectrosynthetic reactions.

View Presentation

COSC2023BOLDING58767 COSC

An Asset Management System for Increased Efficiency and Accountability

Type: Undergraduate
Author(s): Matthew Bolding Computer Science Joey Flores Computer Science Zyler Niece Computer Science Emma Sanders Computer Science
Advisor(s): Krishna Kadiyala Computer Science
Location: First Floor, Table 5, Position 1, 1:45-3:45

Chalk Mountain Services of Texas, LLC. is a trucking company whose business is transporting raw materials, such as fracking sand, to various oilfield sites in and around west Texas. With over 1,300 assets in their fleet, they’re presented with a number of logistical problems, like optimizing a driver’s time to make as many trips between drill sites and raw material depots as possible in a day. Such routing and scheduling applications must have accurate data—the assets are either in or out of service and their location—to schedule sensible routes.

Should an asset break down in the unforgiving terrain of west Texas, the appropriate employee should have the ability to take note of such an incident so that routing and scheduling applications have correct, up-to-date data. The company’s current solution allows for any user to make changes to any asset, regardless of authorization status. Inconsistencies in assets’ statuses can lead to an employee having to manually intervene in the scheduling process, which decreases the company’s overall efficiency. Additionally, their current application is not mobile-friendly, but a sizable portion of users nevertheless interface with the current website from their phones.

The company’s expectations come in either one of two forms: a website and a companion app or a reactive website that can be used on a desktop or mobile device. The application shall use CRUD—create, read, update, and delete—methods to keep track of the assets, and the application shall provide different users with different access levels with Active Directory authentication. We have created a reactive website that can be used from either a desktop environment or mobile one, and our implementation of their requirements exists as a three layer architecture: a Microsoft SQL Server database, a backend developed in NodeJS, and a React front end. To make the deployment as simple as possible, we did not pursue developing the application on cloud providers; the application depends on a connection to an in-house SQL server and Active Directory service both of which cannot be accessed outside their intranet and are critical to the application’s functionality.

View Presentation

COSC2023CALLAN8645 COSC

Instructional Equity Observing Tool

Type: Undergraduate
Author(s): Sam Callan Computer Science Micah Collins Computer Science Yilika Loufoua Computer Science Rory McCrory Computer Science
Advisor(s): Krishna Kadiyala Computer Science
Location: Basement, Table 4, Position 1, 11:30-1:30

The Instructional Equity Observing Tool is an online video/audio analysis tool that is geared towards assisting the teachers and faculty of educational institutions in analyzing and understanding how their interaction with students translates into real learning. Our platform is meant to replace the current, manual method of analysis that many teachers/instructors perform to try and quantify different metrics about their teacher-student interaction. Instructors have expressed desire to view metrics such as the time the teacher talks during a lesson, what is the response time of students to those questions, and other data points such as the types of questions being asked (as categorized by Bloom’s Taxonomy). Quantifying these instructional variables helps these instructors more accurately understand the areas that they are strong in, and more importantly, the areas in which they can be more interactive with the students as to allow them to better absorb the lessons being taught. With the help of our tool, we can allow teachers to quickly and efficiently gather this data about each of their lessons so that data driven changes in teaching techniques is possible, and moreover, so that teachers can identify potential vectors of ineffective instruction.
The process for using this application is for a user to login/sign-up for our site, then they will proceed to upload either an audio or video file to the designated location. Our tool will then take that video/audio file and execute a customized API call to AssemblyAI (https://www.assemblyai.com/) that transcribes this file into text. We then perform specialized data manipulation operations on the transcript to generate all the different metrics and display them in an easy-to-read format that the user can then scroll through and analyze the results. The user will also have the option to save this report that is generated as a pdf, which they or an administrator role will be able to access and view again at a later time.
Our application is hosted using Amazon Web Services (AWS) and utilizes many different functionalities that this service provides. AWS manages our authentication and authorization, user account management, and report storage functionalities. Our current system does not use its own machine learning model and instead offloads transcription to the AssemblyAI API, however this could be updated in the future with the addition of large datasets for training. A specifically trained machine learning model in this case could provide a more accurate categorization of questions and a more flexible tool that could eventually make predictions or suggestions to the user on the best ways to improve their teaching methods.

View Presentation

COSC2023FAHIMI38169 COSC

Open Planner

Type: Undergraduate
Author(s): Shawn Fahimi Computer Science Thuong Hoang Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Third Floor, Table 5, Position 1, 11:30-1:30

Open Planner is a web application designed to meet the increasing need for college students to have a way to more easily organize and access major
assignment/exam dates across all courses during busy college semesters. Open Planner seeks to ease agenda making for students by parsing uploaded student syllabi for major assignment/exam dates and generate a personalized calendar the student can access from his/her account upon sign-up and syllabus upload. Once they have access to their personal calendar, students will be able to add events, delete and modify existing events, and customize their course calendars, giving them fast access to a customized and modifiable calendar without the time demanding task of looking through course syllabi and adding major dates one by one.

View Presentation

COSC2023GAUCIN3974 COSC

Native Meteorites

Type: Undergraduate
Author(s): Alberto Gaucin Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Second Floor, Table 5, Position 2, 1:45-3:45

Indigenous communities have a deep-seated understanding of the importance and sacredness that their land has in their daily lives (native lands.ca); they have a deep sense of place. The primary objective of Native Meteorites (NaMe) is to amplify the work of the Native Earth | Native Sky (NENS) program by recognizing the critical importance of free-choice learning in STEM education and providing a different lens through which STEM can be made culturally relevant for students in Native American nations.
This project focuses specifically on meteorites found on the lands of the three Oklahoma Native American tribes participating in NENS and provides a concrete example of the cultural relevance of planetary science and STEM, utilizing concepts that are deeply rooted in a sense of place. The goal of this project is to increase the interest and participation of an underrepresented important people group in the national STEM workforce, as well as provide an example of the relevance of place-based STEM education for all individuals.
This project consists of an interactive map, which displays where relevant meteorites landed; and also provides supplementary resources for education. Members of the NaMe project will develop STEM resources that focus on meteorites found on Native American Lands. This will be unlike other free-choice learning because this interactive map caters specifically to indigenous peoples’ learning styles.
In collaboration with Native American individuals, the team designed the site layout, content, and imagery to be as inclusive and considerate as possible. The product of this project ultimately caters to an audience that is quite underrepresented– so we used conscious software development in the website-building process.
The interactive map feature of this site will increase the interest and participation of an underrepresented important people group in the national STEM workforce, as well as provide an example of the relevance of place-based STEM education for all individuals.

View Presentation

COSC2023JAIN29305 COSC

BMW Performance Horse Database

Type: Undergraduate
Author(s): Chirayu Jain Computer Science Madison Gresham Computer Science David Hanft Computer Science Jerry Wu Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Third Floor, Table 6, Position 1, 1:45-3:45

The system to be is BMW Performance Horse Database, also referred to as BMWPHD. The client is Brooke Wharton with BMW Quarter Horses. The purpose of her company is to breed and raise horses for reining and reined competitions. Currently this field faces the issue that horse data is spread over multiple different platforms that do not communicate with one another. With that, the main objective of BMWPHD is to create a user-friendly searchable database for the task of finding and ranking horses for breeding, buying, and determining show schedules. The users of this application include fans, riders, coaches, judges, and investors in the sport. The hope is to not only bring more fans to the sport through the easy access to data, but also improve the level of competition so that the horses can be bred stronger and therefore perform at a higher level within the sport. On the technical side, the system will be implemented with the following technologies: the frontend will use Vue.js, the backend will be implemented in Java Spring Boot, the database will be built in PostgreSQL. The final version of the application will be deployed on Heroku.

View Presentation

COSC2023NGUYEN35413 COSC

Chinese Learning Platform

Type: Undergraduate
Author(s): Bao Nguyen Computer Science Quynh Dong Computer Science Vipul Lade Computer Science Chase Lennartson Computer Science
Advisor(s): Bingyang Wei Computer Science
Location: Basement, Table 2, Position 2, 11:30-1:30

The Chinese Learning Platform(CPL) is a program to help students to learn the Chinese language. This platform will be used by both students of these ages attempting to learn Chinese as well as by the teachers who will use the platform as a teaching tool to help those students. As it is a teaching tool, the main motivation behind it is educational, with the hope to support students in learning the Chinese language, and in the future, this will be expanded to learning various other languages using the same CPL. The platform hopes to help these students utilize a textbook created by CPL, and will also include features that will help the students listen, read, write, and speak in the language they are learning.

View Presentation

COSC2023RAYNOR5002 COSC

Keepsake Project SRS Presentation

Type: Undergraduate
Author(s): Lucas Raynor Computer Science
Advisor(s): Krishna Kadiyala Computer Science
Location: Third Floor, Table 4, Position 3, 11:30-1:30

The COVID-19 pandemic has made it difficult for families to stay connected, especially those separated by distance. Keepsake is a software product that was developed with the aim of helping families bridge the gap by enabling them to share stories and memories across generations. The platform provides a secure and private space where family members can record and post audio content that can be accessed by their loved ones anytime, anywhere via cloud storage.

Keepsake offers an intuitive user interface that is accessible to users of all ages, making it easy for them to navigate and listen to the audio content. By hosting the platform on Amazon Web Services (AWS), Keepsake provides a reliable and scalable solution for storing and retrieving audio files/posts across the years. The platform is designed to ensure that each family's audio files are separate and private from other family audio files, offering complete privacy to users.

To get started with Keepsake, users can easily join their families and start recording and uploading audio files. The platform allows for organization and sharing with specific family groups, making it easy to share stories and memories with those who matter most. Keepsake is a powerful tool for connecting families across generations, providing accessibility, convenience, and security for families of all sizes and backgrounds.

View Presentation

ENGR2023LOPEZ13454 ENGR

The Importance of Power Quality

Type: Undergraduate
Author(s): Daniel Lopez Engineering Chelsea Boh Engineering Sam Busa Engineering Nhu Le Engineering
Advisor(s): Morgan Kiani Engineering
Location: Third Floor, Table 8, Position 1, 1:45-3:45

Power quality is the compatibility between the voltage that comes out of an electrical outlet and the power load that is being plugged into it. A power load (also known as electrical load) is any electrical device that needs to be plugged into a larger power grid to run, such as televisions and microwaves.
Different devices require different power loads to run at full efficiency and while electrical systems are capable of handling newer power loads, they are currently set to work with older ones as well. This may cause some side effects on power quality in the system. In this project, we investigate how to improve the power quality in the system caused by an inductive older load.

View Presentation

ENGR2023RAJNARAYANAN64173 ENGR

Electromagnetic wave propagation through closed metal systems

Type: Undergraduate
Author(s): Samyuktaa Rajnarayanan Engineering Harmann Singh Chhabra Engineering
Advisor(s): Stephen Weis Engineering
Location: Second Floor, Table 1, Position 1, 1:45-3:45

A Faraday cage is an enclosure that shields electromagnetic fields from entering or exiting the cage. While metals with high electrical conductivity are expected to effectively demonstrate the operation of a Faraday cage, preliminary observations of a sealed cast iron cylinder allowing the transmission of Bluetooth signals between a smartphone and wireless earbuds across it suggested the need for further research into electromagnetic wave propagation through closed metal systems. This research utilized Bluetooth connectivity tests through sealed metal cylinders made of cast iron, aluminum, and stainless steel to analyze the working of Faraday cages, explore related material properties, and isolate possible reasons for the conflict in expected behavior when electromagnetic transmission is detected through such cages. The research methods included conducting Bluetooth connectivity tests with different cylinder orientations and analyzing the strength of the transmitted and received Bluetooth signal. The key findings of this study suggest that material properties, spatial orientation, and the strength of the electromagnetic source influence the transmission of electromagnetic waves through sealed metal cylinders. The implications of these findings suggest potential exceptions to a common electromagnetic phenomenon and provide insights for future research.

View Presentation

ENGR2023SANTILLAN57704 ENGR

Developing a Robust Testing System for Evaluating Texas Instrument’s Phase Light Modulator Devices

Type: Undergraduate
Author(s): Rigoberto Santillan Engineering Natalie Arguello Engineering Daniel Lopez Engineering Edgard Rodriguez Engineering Lysa Sugira Engineering
Advisor(s): Sue Gong Engineering
Location: Third Floor, Table 10, Position 1, 1:45-3:45

Texas Instruments is developing a new micro-optical-electro-mechanical device called phase light modulator (PLM). The TCU senior design team developed a robust testing system that can expose 20 PLM devices to different light sources with the capability of monitoring the temperature and light intensity at each device location. The system design and construction of the testing system will be presented. In addition, the selection and operation of LEDs, temperature and light sensors, as well as the optical components that are needed for the light source and sensors will be discussed.

View Presentation

ENSC2023BONECK8740 GEOL

Income and Road Quality Correlation in Texas

Type: Undergraduate
Author(s): Megan Boneck Environmental Sciences Audrey Haffner Environmental Sciences Gisela Pacheco Environmental Sciences Zoey Suasnovar Environmental Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Basement, Table 8, Position 2, 1:45-3:45

This research assesses the relationship between income per capita and the amount of maintenance received for the major roads across the State of Texas. Relevant datasets and analysis techniques such as demographic (census data), population density (distribution), road network, maintenance records, etc. will be carried out using ArcGIS Pro software. A series of maps highlighting analysis results derived based on the various parameters will be produced to provide a comprehensive overview of the relationship between the variables, if any, that would be useful for future decision-making.

View Presentation

ENSC2023BUCKMEIER40936 ENSC

An equity analysis of tree canopy in Fort Worth, Texas

Type: Undergraduate
Author(s): Adam Buckmeier Environmental Sciences Manuel de Oyarzabal Barba Environmental Sciences Peter Fahey Environmental Sciences
Advisor(s): Brendan Lavy Environmental Sciences
Location: First Floor, Table 4, Position 1, 11:30-1:30

Trees provide an array of benefits to urban communities, such as oxygen production, flood mitigation, air pollution reduction, increased property value, cooling effects, and cultural services. Tree distribution, however, varies across cities, impacting the delivery of these services from neighborhood to neighborhood. Research has shown that low-income neighborhoods are more likely to have less trees than wealthier neighborhoods, leaving these neighborhoods more vulnerable to health impacts, such as heat-related and respiratory illnesses. The purpose of this study is to analyze tree canopy cover in relation to a set of demographic variables at the US Census block group level to understand if inequities exist in Fort Worth, Texas. We used a geographic information system (GIS) to assess the extent to which age, race, income, and housing characteristics are related to tree canopy. We conducted a correlation analysis between percent canopy cover and the demographic variables. Preliminary results suggest that majority minority and low-income block groups possess less canopy cover than predominantly white, higher-income areas in Fort Worth.

View Presentation

ENSC2023DEOYARZABAL5254 ENSC

Spatial Relationship Between Trees and Wildlife in Tarrant County

Type: Graduate
Author(s): Manuel de Oyarzabal Environmental Sciences
Advisor(s): Esayas Gebremichael Environmental Sciences
Location: Basement, Table 8, Position 1, 1:45-3:45

As urbanization continues to fragment landscapes, wildlife become more isolated and find it harder to access the necessary resources to survive. Finding ways to connect fragmented landscapes is necessary for wildlife, but it is important to know what areas wildlife currently occupy. Trees provide valuable habitat for many species, but it is important to know what tree species are the most beneficial, and where these are located. This study used point locations of five tree species, bobcats, and coyotes to identify the density of each in Tarrant County. We identified that cedar elms have the most overlap with both bobcats and coyotes. The areas with high densities of cedar elms are the best for and bobcats, which is an indicator that they will be good for other species. Therefore these areas should be targeted for conservation and restoration.

View Presentation

ENSC2023DEOYARZABALBARBA55642 ENSC

Improving urban flyways for bats: The importance of tree canopy structure.

Type: Graduate
Author(s): Manuel de Oyarzabal Barba Environmental Sciences
Advisor(s): Tory Bennett Environmental Sciences Brendan Lavy Environmental Sciences
Location: Basement, Table 9, Position 1, 11:30-1:30

The expansion of urban areas is a threat to wildlife because it fragments habitat and reduces the access to resources. Consequently, there is a need to improve the quality of urban habitats by increasing connectivity between habitats and resources. For volant species like bats, birds, and flying invertebrates, linear features such as tree-lines and/or connected canopies can create corridors that allow these wildlife to move along. In an urban environment, the structure of the urban forest (essentially all the trees in an urban area) can provide connectivity, if appropriate, thereby increasing access to resources and landscape permeability. Thus, in this study we used behavioral observation and acoustics surveys to monitor the commuting activity of bats in Fort Worth, Texas along 15 potential commuting routes. At each route, we measured tree height, percent canopy cover, gap distance, number of gaps, and rugosity or ruggedness of the canopy edge to identify what tree canopy features aided bat movement. Using GLM, we found that routes surrounded with more linear canopy cover and less gap distance resulted in more bats commuting. Moreover, we found that an increase in rugosity negatively influenced route use, as undulating tree canopies increased obstacles that created an inefficient commuting route (i.e., straight lines save energy). Our study demonstrates that the urban environment can be managed to increase connectivity and we provide recommendations on how to better manage the urban forest to increase commuting corridors for bats in this landscape.

View Presentation

ENSC2023DIXON47939 ENSC

Assessing contamination within Boone and Roubidoux Aquifer Recharge Zones in Northeastern Oklahoma

Type: Graduate
Author(s): Colin Dixon Environmental Sciences
Advisor(s): Michael Slattery Environmental Sciences
Location: Second Floor, Table 6, Position 3, 11:30-1:30

Currently over 1,400 households use the Roubidoux Aquifer in Northeastern Oklahoma as their main source of drinking water. Additionally, the total water demand is projected to increase 56% from 2010 to 2060. This increase in water demand is concerning due to the Boone and Roubidoux aquifers being highly susceptible to surface contamination, containing elements such as lead and zinc, from the Tar Creek Superfund site located (TCSS) in Picher, OK. This study seeks to determine, using spatial analysis tools in GIS, the contamination susceptibility of the Boone and Roubidoux aquifer recharge zones as a result of direct surface contaminants and processes that facilitate their propagation.

View Presentation

ENSC2023GHIMIRE15290 ENSC

Flood Hazard Risk Mapping for Rowlett Creek Watershed using Remote Sensing and GIS-based Flood Hazard Index

Type: Graduate
Author(s): Binita Ghimire Environmental Sciences
Advisor(s): Gehendra kharel Environmental Sciences Esayas Gebremichael Geological Sciences
Location: Third Floor, Table 6, Position 2, 1:45-3:45

Flood is a major threat to many communities worldwide, despite many areas lacking flood hazard mapping due to data scarcity. Under such a scenario, remote sensing and GIS-based approaches could be a promising solution for assessing and characterizing flood hazard risk. Therefore, the objectives of this research project are to develop a flood hazard risk map for Rowlett Creek Watershed using remote sensing data and GIS (Geographic Information Systems) techniques to identify and evaluate flood risk areas over the study site. The research will involve development of complied flood hazard index (FHI) using GIS software based on flood causative factors such as slope, flow accumulation, drainage network density, distance from drainage channel, geology, land use/cover, soil moisture and rainfall intensity. Filed data of geology will be obtained from SSURGO and other data will be extracted from remote sensing product such as SRTM, NLCD, CROPCASMA and PERSIAN. The expected outcome of the research is the development of flood hazard risk thematic map and further verify it with the inundation area of a historical flood events in the study area, which will help to purpose proper mitigation and management strategies in flood-prone area. This research looks over a remote sensing and GIS-based approach for characterizing flood hazard risk, which will provide valuable information for policymakers, disaster management agencies, and other stakeholders working towards reducing the impact of floods even in data-scarce areas.

View Presentation

ENSC2023KING7948 ENSC

An Inside Look into how the Spatial Distributions of City Amenities Affects Household Income and Vice Versa

Type: Undergraduate
Author(s): Trip King Environmental Sciences Tabby Pyle Geological Sciences
Advisor(s): Esayas Gebremichael Environmental Sciences
Location: Basement, Table 10, Position 2, 11:30-1:30

The present study is aimed at comparing the annual income per household to amenities in districts within the Dallas Fort Worth metroplex. Several datasets and analysis results including the spatial distribution of public and private schools, school ratings, proximity to health facilities, parks, and other government provided services will be combined to investigate the research question. Some of the data analysis techniques that will be implemented using ArcGIS Pro include creating buffer zones which act as visual guides to better demonstrate comparisons and communicate the findings in an interactive way.

View Presentation

ENSC2023KLOSAK55562 ENSC

Identifying opportunities and challenges for food recovery in Fort Worth, Texas

Type: Undergraduate
Author(s): Kaleigh Klosak Environmental Sciences Ashlyn Morrill Environmental Sciences Camilla Price Biology Olivia Sottile Biology
Advisor(s): Brendan Lavy Environmental Sciences
Location: Third Floor, Table 8, Position 2, 1:45-3:45

Each year, as much as 40 percent of food produced in the United States is wasted by producers or consumers. When food waste is sent to landfills, it competes for limited space and generates the greenhouse gas methane. Globally, food loss and waste represent 8 percent of anthropogenic greenhouse gas emissions. Restaurants are known to be a contributor to food waste, both in the kitchen and from consumers. The purpose of this research is to examine food recovery efforts of restaurants in Fort Worth. We sent a survey to 371 restaurants in Fort Worth asking about their food waste management practices. The survey was designed to document restaurants’ current food waste practices, interest in food donation and composting programs, and business characteristics. We analyzed the responses through descriptive statistics and other statistical methods to evaluate how practices varied by business demographics and type of establishment. From this survey, we discovered local barriers to food recovery and from these, we suggest forms of outreach or programming that would help restaurants to reduce food waste. We also used responses to identify and map ideal food waste drop-off locations for restaurants that the city could use to plan recovery efforts.

View Presentation

ENSC2023MOLLENDOR55171 ENSC

Assessing Biodiversity and Climate Resiliency of Trees in a Flood Plain Buyout

Type: Undergraduate
Author(s): Kenna Mollendor Environmental Sciences
Advisor(s): Brendan Lavy Environmental Sciences
Location: First Floor, Table 4, Position 1, 1:45-3:45

Urban forests are a common way to integrate nature into heavily populated areas. Urban forests provide a range of benefits to urban communities. Trees provide economic, social, and cultural benefits. For instance, trees provide opportunities for individuals to engage with the environment, reduce stress, and increase property values. Trees also contribute to ecosystem services as well by filtering air pollution, providing habitat for wildlife, and mitigating storm water runoff. The purpose of this research is to assess the biodiversity and the climate resiliency of trees in an urban forest in Arlington, Texas that was part of a program for environmental mitigation of a flood plain. To assess the biodiversity and climate resiliency of the area’s trees, we collected the following data: tree diameter measured at 4.5 feet above the ground (DBH), GPS coordinates of trees, species, and tree condition. We analyzed the data using the Simpson’s Biodiversity Index and the Shannon Diversity Index values to assess the biodiversity of present tree species and identify their climate resiliency. We compared these results to two Representative Concentration Pathways (RCPs) to understand the potential impact of climate change on the urban forest. Finally, we offer suggestions to increase the resiliency of this urban forest and the potential for incorporating these findings in future urban forest management plans.

View Presentation

ENSC2023MORENO24736 ENSC

Are Our Creeks Safe? Investigating the presence of bacteria in Village Creek, Everman, Texas.

Type: Undergraduate
Author(s): Isabella Moreno Environmental Sciences
Advisor(s): Gehendra Kharel Environmental Sciences
Location: Third Floor, Table 2, Position 1, 1:45-3:45

At the Water and Society Lab at TCU, we are studying the presence of Escherichia coli (E. coli). The Village Creek tributary of the Trinity River is the subject of this testing, and it is one of the many water bodies monitored by the US Geological Service. Using information provided by the monitoring location alongside the data gathered from our research, we can assess and monitor the concentration of E. coli in the Village Creek.

Through weekly sample collection and analysis, we can determine the prevalence of E. coli in the Village Creek. Our method is to collect water samples, add EPA-approved Colilert testing chemicals, and incubate the samples at 35℃ for 24 hours. During analysis, the presence of E. coli is quantified by colony forming units (CFU). This research indicates whether or not the sample contains unsafe levels of E. coli. According to the Texas Commission on Environmental Quality and the US EPA, 126 CFU per 100 mL of water is deemed unsafe. In addition to recording CFU, we also document certain hydro-climatological variables such as ambient and water temperature, rainfall, and turbidity. Through these findings, we can be applied to water management and quality decisions throughout the Dallas-Fort Worth and north-central Texas regions.

View Presentation

ENSC2023ROUSSEL53636 ENSC

A GIS analysis of wildfire risk in Colorado and mitigation strategies using livestock

Type: Undergraduate
Author(s): Kaitlyn Roussel Environmental Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Basement, Table 10, Position 1, 1:45-3:45

Wildfires are a global concern as they are unpredicted fires that cause harm to their surrounding environment, local wildlife, and humans. The negatives of these wildfires outweigh the positives as their occurrence is natural but also caused by human negligence. This past year there were about 69,000 wildfires reported nationally; of these fires, 835 were from Colorado. This study assesses the risk of wildfires in Colorado by using GIS and spatial data to map fire risk and determine possible mitigation techniques through utilizing livestock.
For the past 20 years, Colorado has experienced their largest wildfires, and with no decrease in the number of wildfires each year, mitigation techniques are crucial. In determining what method to use, it is valuable to focus on all the factors that add to these fires, such as the amount of rainfall, elevation, humidity, human activities, and more. Multiple past studies have used livestock as a form of wildfire mitigation. Using grazers to eat the fuel these fires thrive on can decrease the spread of future fires. Grazers are an environmentally stable form of fire mitigation as they eat the vegetation and then process it to become nutrients for the soil. We can determine the areas of high risk in Colorado by assessing how the stated factors contribute to Colorado wildfires and see if grazers are a possible mitigation method.

View Presentation

ENSC2023SCOTT7199 ENSC

Enhancing urban areas for bat communities: Water quality influences water availability

Type: Graduate
Author(s): I'Yanna Scott Environmental Sciences
Advisor(s): Victoria Bennett Environmental Sciences Gehendra Kharel Environmental Sciences
Location: Third Floor, Table 9, Position 1, 11:30-1:30

Water represents one of the required resources for wildlife to live and thrive in an area. Due to urbanization, we have seen an increase in the transformation of natural water sources (i.e. lakes, streams, and rivers) to semi-natural (i.e. retention ponds, reservoirs, and drainage ditches), for which we create for the urban infrastructure and for animals. The objective of the following study was to assess whether water quality influences the direct use of water sources by terrestrial wildlife in an urban environment utilizing bats as our indicator species. We, therefore, hypothesize that water sources with higher water quality will have an abundant and diverse community of bats using them (i.e., foraging and drinking), while lower quality water sources will have little to no bat activity and lower species diversity. We conducted this study using thermal cameras and acoustic monitoring to determine whether water quality has discernible influences for water resource use by bats at water sources across six urban parks and greenspaces in Fort Worth, Texas. We observed increased bat activity at water sources that were listed as areas with higher water quality standards with very slow moving water, and little activity in areas that have been known to have lower water quality. Understanding how the water quality of urban sources impacts bats, may not only be used as an indicator of water availability for other wildlife species in urban areas, but also provide insights into the environmental health of local parks and surrounding neighborhoods.

View Presentation

GEOL2023DARGE52617 GEOL

Sinkhole Detection and Characterization in West-central Texas using InSAR Time Series and Electrical Resistivity Tomography.

Type: Graduate
Author(s): Yosef Darge Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Second Floor, Table 3, Position 1, 11:30-1:30

Sinkhole hazards pose a major threat to key infrastructure and human lives in Taylor and Jones counties in West Central Texas. These counties are underlain by soluble evaporite and carbonate rocks. In this study, a data fusion approach was adopted in which multi-source datasets and techniques were combined to detect and map the spatial distribution of sinkholes, quantify their displacement rates, and identify the processes and factors controlling their occurrence. Preliminary results indicate: (a) there is a spatial correspondence between depressions (area: 625 m2 - 2500 m2) identified using Light Detection and Ranging (LIDAR) datasets and previously- mapped sinkholes; (b) deformation rates over the mapped depressions derived using Persistent Scatterer Interferometry technique applied on 53 level-1 Sentinel-1 images (2016 – 2021) and calibrated using long-term (2006 – 2021) GNSS data indicate an average and peak subsidence rates of -6 mm/yr and +5 mm/yr, respectively; (c) clusters of high subsidence rates were noted over areas underlain by evaporites belonging to the Clear Fork Group; (d) efforts to validate the accuracy of the sinkhole detection techniques are currently underway using 2D Electrical Resistivity Tomography (ERT) surveys carried out on the identified subsiding depressions. In addition, groundwater level and discharge time series and other relevant datasets are being integrated to assess the processes and factors that induce the formation of these features. Results of this study could be used to develop an early warning system to implement mitigation strategies to curtail the impacts of the sinkhole hazards in Texas and other parts of the globe.

(Presentation is private)

GEOL2023DARGE64533 GEOL

Wildfire severity assessment using NBR (Normalized Burn Ratio) and NDVI drive indices from Landsat 8 imageries in Mendocino National Forest, California.

Type: Graduate
Author(s): Yosef Darge Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: First Floor, Table 6, Position 1, 1:45-3:45

The Mendocino National Forest was affected by fire in August 2020. It devastated a substantial area of land over the period of three months, resulting in hundreds of millions of dollars in damage and the evacuation of thousands of people. Moreover, many of the local plantations were destroyed. To evaluate the severity of the impacted area for rehabilitation and restoration, severity data and maps are crucial. This study will combine several geospatial data including multitemporal remote sensing data to identify changes in forest structure and moisture content affected by the fires through burn severity maps. This study will use the Normalized Burn Ratio (NBR) technique to identify burned areas and provide a measure of burn severity. The NBR is calculated as a ratio between the NIR and SWIR values bands 5 and 7 obtain from pre-fire and post-fire Landsat 8 imageries. This will be followed by generating the Differenced Normalized Burn Ratio (ΔNBR) for pre and after-imageries to map the fire severity. The result of the NBR analysis will be integrated with the Normalized Difference Vegetation Index (NDVI) to map vegetation greenness over the study area that will be helpful to validate the accuracy of the NBR analysis. Moreover, elevation dataset (Digital Elevation Model (DEM)) will be used to assess factors that exacerbate emerging wildfires such as topography and slope.

(Presentation is private)