Filter and Sort







GEOL2018FUNDERBURG1151 GEOL

Metasomatism in Eucrites

Type: Graduate
Author(s): Rebecca Funderburg Geological Sciences
Advisor(s): Rhiannon Mayne Geological Sciences

METASOMATIC FEATURES IN EUCRITES. R. L. Funderburg1, R. G. Mayne, N. G. Lunning2, and S. Sin-gletary3, 1Monnig Meteorite Collection, 2950 West Bowie Street, SWR 244, Texas Christian University, Fort Worth, TX 76109. (r.funderburg@tcu.edu), 2Department of Mineral Sciences, Smithsonian Institution, National Museum of Natural History, 10th and Constitution NW, Washington, DC 20560-0119. 3Robeson Community College, 5160 Fayetteville Road, Lumberton, NC 28360.

Introduction: The breakdown of pyroxene to silica and troilite was first identified as an alteration process in eucrites by Duke and Silver [1]; however, metasomatism was not iden-tified as a potential cause of these features until the 1990s [2] and has been increasingly identified in the last 10 years [3, 4, 5, 6, 7]. Many eucrite studies were conducted prior to this time and, while metasomatic features may have been identified, they were not attributed to this process.

Barrat et al. [4] proposed a three-stage alteration process to explain the products of metasomatic alteration found in eu-crites:
(1) Fe-enrichments along cracks in pyroxenes
(2) Fe-rich olivine deposits in cracks and troilite
(3) Al-depletion coincident with Fe-enrichment of pyroxene

While metasomatism within eucrites is now commonly identified within the literature, the mechanism for this altera-tion is not well understood. Possible mechanisms proposed in-volve hydrous fluid alteration [4] or sulfurization from a S-rich vapor [6, 7]. The addition of sulfur is required to produce troilite from the breakdown of pyroxene, which has been ob-served in several eucrites [3, 4, 5, 6, 7]. Zhang et al. [5] sug-gested that the sulfur may have been present in the form of a dry S-O-P vapor, formed by the volatilization of pre-existing S- and P-rich material as a result of impacts. Additional petro-logical studies are needed to test if metasomatism was consist-ently driven by S-O-P vapors or if some metasomatism lacks the P-component expected for impact derived vapor.

Metasomatism has been directly investigated for only a handful of eucrites. This study will investigate metasomatism in both Stannern and Main-Group-Nuevo-Laredo (MGNL) eucrites to investigate the com-position of the altering fluid/vapor and overarching processes that drive metasoma-tism on the eucrite parent body. Our preliminary work is fo-cused on the Stannern-trend eucrites Bouvante and LEW 88010, the main group eucrite Béréba, and the polymict eu-crite NWA 4834.

Methods: The samples from this study are on loan from the following: Béréba (USNM 5745-2, USNM 6003-2; Na-tional Meteorite Collection, Smithsonian Institution), Lewis Hills 88010 (LEW 88010) (LEW 88010,4; Meteorite Working Group), Bouvante and Northwest Africa 4834 (NWA 4834) (M1224.3, M1224.5, and M2049.2; Monnig Meteorite Collection). Petrographic analysis was conducted via optical micros-copy with an Olympus BX51 polarizing light microscope at the Oscar Monnig Meteorite Collection at Texas Christian University. Backscatter electron (BSE) maps and major ele-ment data for pyroxenes in Bouvante, LEW 88010, and NWA 4834 were measured by a JEOL JXA-8530F HyperProbe elec-tron microprobe analyzer (EMPA) at Fayetteville State Uni-versity’s Southeastern North Carolina Regional Microanalyti-cal and Imaging Consortium. Backscatter maps were gener-ated for each thin section and energy dispersive x-ray spec-trometry (EDS) point analyses were performed.

Results and Discussion: Of the four samples selected for this study so far, one is unbrecciated (LEW 88010), two are monomict (Béréba and Bouvante), and one is polymict (NWA 4834). These samples were selected as they were observed to contain possible metasomatic features during our petrographic survey, but have not been included in the current literature re-garding metasomatism. They include members of both the Stannern- and MGNL- trends (S: Bouvante and LEW 88010; MGNL: Béréba). All samples are either falls or were observed to show little to no terrestrial alteration. Mineralogically, they are typical eucrites, being dominated by pyroxene and plagio-clase, with lesser phases including troilite, chromite, ilmenite, Fe-rich olivine, and silica.
Preliminary results suggest that Fe-enrichment of pyrox-ene rims, along with an associated Al-depletion, is occurring due to metasomatism in the three samples examined using EMPA. Fe-rich olivine was observed in NWA 4834. Petrographic analysis identified the breakdown of pyroxene into troilite and silica in all four samples.

Future Work: Quantitative pyroxene and plagioclase data for all four samples will be collected prior to the conference. This will allow for further assessment of the Al-depletion along with Fe-enrichment in pyroxenes. We will also investigate the presence of phosphates in these samples to investigate the P-component that would be present in an impact derived vapor. We will assess if there are any differences in metasomatism between MGNL and Stannern-trend eucrites. A survey of previously identified residual eucrites for metasomatic features will also be conducted, so that all three geochemical groupings are represented, if possible.

View Presentation

GEOL2018HARRISON25027 GEOL

Facies Characterization, Architecture Analysis, and Depositional Environment of Cretaceous-Paleogene Coal Beds and Surrouding Strata within the Raton Basin of Colorado and New Mexico, USA

Type: Graduate
Author(s): Ross Harrison Geological Sciences John Holbrook Geological Sciences Sean Horne Geological Sciences
Advisor(s): John Holbrook Geological Sciences

The Raton Basin of Colorado and New Mexico is a Laramide foreland basin that has been important to coal geology since its first identification as a coal resource in 1821, and as a major Coal Bed Methane resource in the modern era. Raton Basin contains Cretaceous to Paleogene strata representative of the major transgression and subsequent regression of the Western Interior Seaway. The interaction between the distal and proximal lithosomes of strata within the Raton Basin is not fully understood. The coaly, fine-grained rocks of the lower and upper coal zones of the Upper Cretaceous to Paleogene Raton Formation are indicative of deposition in wet, distal lowlands, whereas the coarser grains of the barren series of the Raton Formation indicate that this unit was deposited in a highland setting proximal to the source. While the basin has been explored and produced for petroleum and coal in the past (specifically the Cretaceous Vermejo Formation and Raton Formation), vertical and lateral interaction, geometries, and potential communication between the coal deposits and surrounding fluvial deposits is not well-understood. This project has served as an investigation into the depositional model of the coal deposits and their surrounding fluvial deposits, specifically by: analyzing outcrops using architecture analysis, performing core descriptions and interpretations, conducting coal palynology, organic petrology, and chemical analysis. It has been proposed that the Upper Cretaceous to Paleogene strata of the Raton Basin were deposited within a Distributive Fluvial System (DFS), and that the coal-rich zone is the down-dip expression of this system. Initial results (vertical and lateral relation of facies in core and outcrop, organic petrology, and palynology) reveal that the extensive and laterally continuous coals formed in a woody low-lying fluvio-lacustrine depositional environment, and humid subtropical climate.

View Presentation

GEOL2018HORNE32182 GEOL

Interaction Between the Upland and Lowland Lithosomes of Late Cretaceous and Paleogene Strata of the Raton Basin

Type: Graduate
Author(s): Sean Horne Geological Sciences Ross Harrison Geological Sciences John Holbrook Geological Sciences
Advisor(s): John Holbrook Geological Sciences

The Raton Basin of Colorado and New Mexico is a Laramide foreland basin that has been important to coal geology since its first identification as a coal resource in 1821, and as a major Coal Bed Methane resource in the modern era. Raton Basin contains Cretaceous to Paleogene strata representative of the major transgression and subsequent regression of the Western Interior Seaway. The interaction between the distal and proximal lithosomes of strata within the Raton Basin is not fully understood. The coaly, fine-grained rocks of the lower and upper coal zones of the Upper Cretaceous to Paleogene Raton Formation are indicative of deposition in wet, distal lowlands, whereas the coarser grains of the barren series of the Raton Formation indicate that this unit was deposited in a highland setting proximal to the source. While the basin has been explored and produced for petroleum and coal in the past (specifically the Cretaceous Vermejo Formation and Raton Formation), vertical and lateral interaction, geometries, and potential communication between the coal deposits and surrounding fluvial deposits is not well-understood. It has been proposed that the Upper Cretaceous to Paleogene strata of the Raton Basin were deposited within a Distributive Fluvial System (DFS), and that the coal-rich zone is the down-dip expression of this system. This hypothesis was tested by integrating results from well log correlations, measured sections, architecture analysis of outcrops from drone photogrammetry, core descriptions, and coal palynology and microscopy. Initial results reveal the presence of three distinct, repeating lithosomes (valley-fill sandstones, mixed terminal splays, and very extensive and laterally continuous coals) that are identifiable and correlatable in well logs, are cyclically represented, and suggest basin-scale swings in depositional environment consistent with shifting components within a basin-wide DFS system, consistent with the DFS hypothesis.

View Presentation

GEOL2018LEHMAN53009 GEOL

Insights into the Sources and Tectonic Setting of Magmatism in a Complex Arc Setting: Major and Trace Element Variations in the ~1.2 Ga Barby Formation in SW Namibia

Type: Graduate
Author(s): Katelyn Lehman Geological Sciences
Advisor(s): Richard Hanson Geological Sciences

The ~1.2 billion-year-old-Barby Formation is located in SW Namibia and has been argued to represent a continental volcanic arc. Previous studies on these rocks primarily relied on mobile-element data, which can be altered by secondary processes and therefore is unreliable for constraining petrologic processes. In an effort to establish the Barby Formation's petrotectonic history, 20 samples were analyzed using XRF and ICP-MS to determine whole-rock major and trace element concentrations. These data were used to answer two questions: (1) Do the samples represent one unique magma series that came from a single source? (2) If the Barby Formation is indeed a volcanic arc, did it form from normal, flat-slab, or oblique subduction? These questions were answered using a combination of geostatisical analyses (distribution, cluster, and outlier analyses), trace-element tectonic discrimination diagrams, and geospatial analyses (see other poster by Lehman et al.). This study supports previous interpretations that the Barby Formation formed in a continental arc setting, with rock samples displaying steeply dipping, light-rare-earth-element enriched patterns, negative Nb/Ta anomalies, and calc-alkaline andesitic to shoshonitic compositions. Major and trace element data indicate at least two magma series from two distinct mantle sources. These two groups are controlled by enrichment differences and variations in the high-field-strength element ratios. The presence of shoshonitic rocks is consistent with flat-slab or oblique subduction.

View Presentation

GEOL2018LEHMAN9136 GEOL

Attempting to Reconstruct an Ancient Convergent Margin: Geospatial Analysis of the Mezoproterozic Barby Formation in the Konkiep Group in SW Namibia

Type: Graduate
Author(s): Katelyn Lehman Geological Sciences Richard Hanson Geological Sciences Tamie Moran Geological Sciences
Advisor(s): Richard Hanson Geological Sciences Tamie Morgan Geological Sciences

The ~1.2 billion-year-old-Barby Formation located in SW Namibia has been argued to represent a continental volcanic arc. Recent research by our group (see other poster by Lehman et al.) has supported these arguments with data exhibiting steeply dipping, light-rare-earth-element enriched patterns, negative Nb/Ta anomalies, and calc-alkaline andesitic to shoshonitic compositions. The shoshonitic rocks are particularly interesting as these compositions often form in unusual arc settings (i.e., flat-slab subduction, oblique subduction, ridge subduction). Pearce et al. (2005) showed that the relative plate depth, and in turn, subduction angle and orientation can be interpreted by mapping diagnostic trace element ratios. The spatial distribution of the geochemical ratios could potentially also differentiate between shoshonitic volcanic rocks formed as a result of unusual plate geometries as opposed to a slab tear. If the map displays a tight cluster of shoshonitic composition rocks, the samples more likely formed above a slab tear, while a dispersed arrangement would be more suggestive of either a flat-slab or oblique subduction origin. ArcGis Pro was used to map and analyze XRF and ICP-MS data from 20 samples of the Barby Formation. The samples are from lava flows or sills and range from calc-alkaline to shoshonitic in composition. Both spatial tools and statistical analysis tools were used in an effort to explore potential geospatial relationships of key trace element ratios and previously established geochemical clusters. These results were then employed to attempt to recreate the subduction conditions that formed this volcanic arc.

View Presentation

GEOL2018MYERS42553 GEOL

Prediction of Paleo-Catchment Area Through Fluvial Morphology and Application of the Fulcrum Method: Festningen Member Svalbard, Norway

Type: Graduate
Author(s): Cody Myers Geological Sciences
Advisor(s): John Holbrook Geological Sciences

The depositional model of the Festningen Member of the Barremian Helvetiafjellet Formation is that fluvial to inner deltaic-plain conditions were established as deltas that built southeastward into the Barents Sea basin from an unknown source northwest of present-day Svalbard. Currently, models of Artic drainage provinces are nascent to non-existent. Here, evidence for a large artic drainage basin into the Cretaceous Barents Sea is suggested by using established scaling relationships and the fulcrum method in the Festningen Sandstone.
Data from several locations in Svalbard: Konusdalen, Revneset, Criocerasaksla, and Hanaskogdalen. The Festningen Member sandstone sections were all initially photographed by drone in order to determine channel body dimensions and architecture in the sandstone as well as to record data for 3D photogrammetric construction of virtual outcrop models. Paleohydraulic estimates based on the fulcrum method use bankfull channel dimensions, specifically the height and width, and the D16, D50, D84, and D90 grainsizes to develop basin-process models and infer past catchment constraints. Festningen Member sandstone sections were logged and found to represent braided fluvial systems with mid-channel bars up to 3 m thick and channel-fills up to 4 m thick. Representative bedload samples were taken from approximately 10 cm above the base of channel scours for analysis and model input. The coarse grainsize and large clasts, frequently 3-4 cm and up to 15 cm in diameter, in the Festningen Member sandstone samples show that this was a large river capable of moving a coarse bedload. Scaling relationships equivalent to 4 m channels and coarse grained D-values is on the order of the modern braided Missouri River, on the South Dakota/Nebraska border.
The Bjarmeland Platform and Fingerdjupet Subbasin in the western Barents Sea have a potential petroleum play in the Lower Cretaceous strata, which are, in part, considered to have been fed by the same Festningen fluvial system that is represented in cliff sections on Svalbard. Seismic profiles show clinoforms that may suggest deltaic facies, but remains unknown due to lack of well data.
Seismic data shows that the Cretaceous Festningen fluvial system was able to deliver enough sediments onto the Bjarmeland Platform area to build clinoforms. The size of the source area sufficient to produce a trunk river on this scale remains unconstrained, but an area of at least 100,000 km2 is necessary to produce the river found in the rock record, if the Fulcrum method is applied. Existing Arctic tectonic reconstructions do not consistently show a land area of sufficient size to accommodate this magnitude of drainage area, but results from this study may provide further input to the discussion on timing and land-mass configuration in the present day arctic during the Early Cretaceous.

View Presentation

GEOL2018OHRMUNDT26503 GEOL

Andesitic pyroclastic intrusions injected laterally into weak lacustrine sediments within a Mesoproterozoic volcanic arc succession, Barby Formation, SW Namibia

Type: Undergraduate
Author(s): Sierra Ohrmundt Geological Sciences
Advisor(s): Richard Hanson Geological Sciences

The 1.2 Ga volcanic arc rocks in the Barby Formation are well exposed in desert terrain in SW Namibia - this formation records the establishment of a major continental margin arc following earlier accretionary events. Recent field work has shown that large portions of the formation consist of pyroclastic fall deposits erupted from small volcanoes (fissures and scoria or spatter cones) in a region with poor drainage and abundant lakes.

Detailed mapping of a well-exposed section of the Barby Formation provides a cross-sectional view of a succession of pyroclastic fall units intercalated with planar bedded lacustrine sediments. Massively bedded units up to ~80 m thick show abundant bombs up to 60 cm across in a matrix of fluidal to angular lapilli, indicating deposition close to source vents undergoing primarily Strombolian-type eruptions. Hypabyssal dikes and sills are common, often cutting through the massively bedded pyroclastic units.

Also present are pyroclastic deposits that intrude lacustrine sedimentary packages at 12 locations spread out over a horizontal distance of ~600 m and a vertical stratigraphic sequence of ~300 m. These deposits contain similar bombs and lapilli as the pyroclastic fall deposits, but show clear fluidal intrusive relations with adjacent sedimentary units. In most cases, zones of peperite are formed in between the pyroclastic intrusions and the lacustrine sediments, consisting of fluidal bodies of vesicular basaltic andesite mingled with fine-grained sediment with preserved lamination. We infer that jets of intrusive pyroclastic material were blasted laterally into weak, unlithified lake sediments from one or more vent conduits feeding explosive eruptions at the surface; these jets are likely to have been forced out by collapse of the conduit inward. Fluidization of the sediment would have occurred as pore water was converted to steam, which would have facilitated lateral motion of the pyroclastic jets.

View Presentation

GEOL2018OHRMUNDT44993 GEOL

Mapping geology of SW Namibia using Landsat-8 band ratios

Type: Undergraduate
Author(s): Sierra Ohrmundt Geological Sciences
Advisor(s): Tamie Morgan Geological Sciences

Landsat-8 data was used to test the effectiveness of using spectral analysis and remote sensing in the differentiation of lithological units and mapping geology in Namibia. The study area is located in SW Namibia, in an arid region with little vegetation, making it an ideal place for remote sensing analysis. Different color composites and band ratios were compared to find the image providing the most geologic information and highest contrast between units. A false color composite (6,3,2 in red-green-blue) was first created to to show differences in bare earth, and from there, various band ratio combinations were created. Geologic maps were used to verify the results and select the best band combination. The best color composite image was created using band ratios from (7/6, 6/5, 4/2), and allowed identification of lithological units and vegetation. The results show that it is possible to draw valid lithological conclusions from spectral patterns, and that high quality imagery can be used to update existing geologic maps or used for exploration.

View Presentation

GEOL2018PATE42788 GEOL

Drainage Area Climate Classification

Type: Undergraduate
Author(s): Jacob Pate Geological Sciences
Advisor(s): Tamie Morgan Geological Sciences

SRS Abstract Drainage Area Climate Classification

For my SRS project I will be determining the climate(s) within a given polygon. The Polygon size and shape will be determined from a specified drainage area for a given stream. I will be using over 400 stream data points with a series of drainage area shape files given to me by Nicole Wilson. I will base the climate on the gauge site location within the drainage area. The koppen climate classification scheme will then be used to specify each drainage area.

View Presentation

GEOL2018PATTERSON54551 GEOL

Maness Shale: A comparison of the Geomechanical and Geochemical Properties within the Lower Eagle Ford

Type: Graduate
Author(s): Samantha Patterson Geological Sciences Richard Denne Geological Sciences
Advisor(s): Richard Denne Geological Sciences

Unconventional shale plays have been a significant source of natural gas, gas condensates, and crude oil through much of North America. The Eagle Ford Shale in south Texas has been a prolific unconventional play since the mid-2000’s. It was deposited in the Gulf Coast basin along the southern rim of Texas. This play covers a vast area that stretches approximately 7 million acres (2.8 hectares) and extends from the College Station to the USA-Mexico Border near Del Rio. The majority of the Eagle Ford has been thoroughly studied and analyzed, however, there is much to learn about the basal member, the Maness Shale.
The Maness Shale was deposited 97 million years ago; it is the basal member of the Eagle Ford Group and lies directly above the Buda Limestone. The formation does not occur continuously throughout the entire Eagle Ford deposition and varies in thickness. Whereas the lateral extent still remains unknown, it has previously been mapped across the San Marcos Arch. The geophysical and geochemical properties of this member create drilling stability issues if encountered while drilling horizontal Eagle Ford wells. To further understand its geomechanical properties, two hand-held devices will be used on cores taken near the San Marcos Arch that contain the Maness Shale to determine rock strength variations of the Eagle Ford section. The Equotip Bambino is a micro-rebound hammer that provides hardness data values that can be used to estimate unconfined compressive strength. The dimpler is a micro-indentation device that infers rock strength by generating a “dimple” created by the tool and then measuring the depth and diameter of the dimple. These measurements are then correlated on graphs against the unconfined compressive strength for the regional Eagle Ford. The Maness has a neutron density range of 20-30%, indicating a high clay content. The x-ray diffraction (XRD) will be used to determine the content of the clay minerals. Geophysical well logs have been collected and correlated across the San Marcos Arch region; the initial maps identified the thickest Maness interval within the Karnes trough.

View Presentation