Filter and Sort







ENSC2024HARGIS6609 ENSC

Using Socio-economic Status and Greenspace to Locate Potential Survey Sites for Bat Foraging

Type: Graduate
Author(s): Elizabeth Hargis Environmental Sciences
Advisor(s): Victoria Bennett Environmental Sciences
Location: Basement, Table 5, Position 1, 1:45-3:45

Urbanization refers to the process of converting natural habitats into human-friendly areas, consisting of concrete structures like buildings and roads that are not typically conducive to wildlife. Despite this, many animals, including bats, are able to adapt to urban landscapes and even provide crucial ecosystem services. Bats, in particular, play a vital role in controlling pests in both agricultural and urban areas. Thus, it is imperative to understand the factors that affect their foraging activity. The aim of this project is to identify potential survey sites that can provide insight into the factors that influence prey availability and abundance.

View Presentation

ENSC2024HARPER59264 ENSC

Investigating Bat Drinking Activity in Response to Variability in Water Surface Area

Type: Graduate
Author(s): Peyton Harper Environmental Sciences
Advisor(s): Victoria Bennett Environmental Sciences
Location: Basement, Table 3, Position 1, 1:45-3:45

With species facing extinction due to human-induced disturbances, conservation efforts aim to protect wildlife and ecosystems. Urban areas, despite their modifications, can provide essential ecosystem services and support biodiversity. However, ensuring wildlife presence requires understanding resource availability and accessibility. Accessibility, defined by an individual's ability to locate and utilize resources, is influenced by landscape features such as permeability and connectivity, which can impede movement. Species-specific traits, including ecology and mode of locomotion, also play significant roles in resource access. For instance, volant species like birds and bats rely on flight to forage and drink, with their ability to maneuver affecting whether they can access a water source or not. Moreover, access may not only be dependent on the size of a water source but also by clutter (i.e., vegetation, exposed rocks and litter), which can reduce the amount of surface area that is actually available. Additionally, seasonal variations in precipitation and evapotranspiration rates can alter water levels, affecting both the size of the water source and the amount of clutter (i.e., exposing more rocks and enabling more aquatic vegetation to grow). Understanding the spatial and temporal dynamics of water surface area is crucial for effective resource management aimed at making urban environments more suitable for wildlife. Thus, we investigated the influence of variation in water surface area on bat drinking activity in an urban environment. Our study focused on six water sources in Tarrant County, Texas, using drone surveillance, thermal technology, and acoustic monitoring from March to September 2023. We hypothesized that as surface area decreased during summer, bat drinking activity would decline. By addressing one potential aspect of water resource availability and accessibility, our study contributes to to more accurate assessments of urban water resource availability and the development of sustainable conservation practices for wildlife.

View Presentation

ENSC2024HARPER64752 ENSC

Assessing Urban Wildlife Water Availability: Investigating Runoff and Evaporation Dynamics in Fort Worth Ponds

Type: Graduate
Author(s): Peyton Harper Environmental Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Basement, Table 3, Position 3, 11:30-1:30

Water is an essential resource for urban wildlife, but this water needs to be available and accessible. Fort Worth is an urban area that gets hot and dry during the summer months which can cause many water sources to dry up, making them unavailable for wildlife. However, some water sources in Fort Worth may be more susceptible to drying up than others. This may be affected by runoff which in turn can be a function of different variables such as soil type, impervious surface cover, vegetation cover, elevation, and more. Additionally, differences in location-specific weather may affect evaporation rates of bodies of water. This study aims: (1) to determine the variations in six different pond sites across Fort Worth, (2) to identify the factors that potentially affect runoff and evaporation, and correlate the variables with the rate of changes of the ponds to determine their significance, and (3) use this established relationship to evaluate the susceptibility of other ponds in the area to drying up during summers.

View Presentation

ENSC2024RZUCIDLO15053 ENSC

An Assessment of the Connectivity of Parks as Pollinator Habitats in Tarrant County, Texas at Multiple Spatial Scales

Type: Graduate
Author(s): Maddie Rzucidlo Environmental Sciences
Advisor(s): Brendan Lavy Environmental Sciences
Location: Basement, Table 10, Position 2, 11:30-1:30

Pollinators are essential to the functioning of terrestrial ecosystems. Approximately 87.5% of flowering plants rely on animal pollination for reproduction (Ollerton, 2017) Due to this, pollinators are vital to the production of human consumed crops and the health of ecosystems. Urbanization drives decreases in pollinator biodiversity, species richness and abundance due to loss of habitat and fragmentation (Turo et al., 2021). Urban characteristics such as densification and impervious surfaces can cause pollinator declines and loss of pollinator services (Wenzel et al., 2020).

Tarrant County has a population of 2,110,640 and encompasses 865.2 square miles in of land north central Texas (United States Census Bureau, 2020). It is also the 15th-most populated county in the United States (United States Census Bureau, 2024). Tarrant County is also located in a major pollinator migratory pathway (National Park Service, 2019). Studies show that both population density and city size impact pollinator populations (Norton et al., 2016; Sivakoff et al., 2018). Such rapid population growth has the potential to impact pollinators and their habitats. Urban green spaces such as parks can be beneficial pollinator refuges (Serret et al., 2022). Connectivity of pollinator habitats is important for species richness and abundance (Graffigna et al., 2023). Due to the rapid population growth, land use change, and densification occurring within Tarrant County and the existence of major pollinator habitats within the area, Tarrant County parks are a compelling place to conduct landscape connectivity research on pollinators. The objective of this project is to assess the connectivity of pollinator habitats in the highly urbanized Tarrant County area. This project strives to understand how urban parks as pollinator habitats connect to one another at a range of distances for pollinator travel.

View Presentation

GEOL2024ALANIS12064 GEOL

Using GIS to Determine Emergency Department and Treatment Center Proximity to Opioid Hot Spots in Tarrant County

Type: Graduate
Author(s): Naomi Alanis Interdisciplinary
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Basement, Table 1, Position 2, 11:30-1:30

As opioid overdose deaths in the United States (US) continue to increase, there is an emergent need to treat those with opioid use disorder (OUD). Understanding geographic variations and their impact on different population groups in the US is now more essential than ever. Significant surges in the usage and misuse of street drugs such as heroin and fentanyl, followed by a corresponding increase in opioid-related deaths, have heightened the urgency for this understanding.

Although characteristics of US counties with persistently high rates of opioid overdose mortality and low capacity to deliver OUD medications has been identified, the counties were aggregated into regions within the US and no one specific county has been targeted. Having comprehensive data on OUD prevalence rates across Tarrant County and/or Texas would be beneficial. Current research regarding spatial associations between place features, neighborhood-level social determinants of health measures, and drug overdose deaths is limited in the realm of drug use and opioid overdose fatalities. Recognizing high-risk areas and features (hot spots) could potentially enhance the quality of the emergency department response, harm reduction services, and the precision of treatment and prevention strategies.

Identifying hot spots of opioid-related emergency needs within Tarrant County may help [re]distribute existing resources efficiently, empower community and Emergency Department (ED) based physicians to advocate for their patients, and serve as a catalyst for partnerships between John Peter Smith Hospital System (JPS) and local community groups. More broadly, this analysis may demonstrate that EDs can use geospatial analysis to address the emergency and longer-term health needs of the communities they are designed to serve.

The goal of this project is to 1) identify spatial associations between place features, neighborhood-level social determinants of health measures, and opioid drug overdose deaths (i.e., high-risk/hot spot areas) and 2) compare them to access to treatment providers (i.e., emergency departments, emergency services, and harm reduction services) to identify geographic areas where the two are not well matched.

View Presentation

GEOL2024AYEJOTO24525 GEOL

Assessing Urban Heat Island Intensity Using Landsat Data

Type: Graduate
Author(s): Daniel Ayejoto Environmental Sciences
Advisor(s): Gebremichael Esayas Geological Sciences
Location: Basement, Table 6, Position 3, 11:30-1:30

The escalating impacts of urbanization on local climate patterns, particularly the phenomenon of Urban Heat Islands (UHIs), necessitate effective monitoring and assessment strategies. This project endeavors to evaluate the Urban Heat Island intensity in Houston, Texas, employing Landsat satellite data and Geographic Information System (GIS) tools within the ArcGIS Pro platform. The study integrates multi-temporal Landsat imagery to derive land surface temperature patterns, facilitating a comprehensive analysis of UHI dynamics over time. Spatial analytics and geospatial techniques are employed to assess the correlation between land use/land cover changes and UHI intensity, offering insights into the factors influencing urban heat dynamics. The results are expected to contribute valuable insights for urban planners and policymakers, aiding in the development of strategies to mitigate the adverse effects of UHI and enhance overall urban sustainability. Additionally, the methodology established in this project can serve as a template for assessing UHI in other urban areas, fostering a broader understanding of the urban climate dynamics.

(Presentation is private)

GEOL2024CHAVEZ25160 GEOL

Sedimentation & Subsurface Characterization of the Lower Cretaceous Muddy Sandstone & Upper Cretaceous Mowry Shale, Powder River Basin, Wyoming

Type: Graduate
Author(s): Chase Chavez Geological Sciences
Advisor(s): Xiangyang Xie Geological Sciences
Location: Basement, Table 12, Position 2, 1:45-3:45

Foreland basins comprise some of the most prolific hydrocarbon producing reservoirs and source rocks in the North American Rocky Mountain region. One of these major producing basins is the Powder River Basin (PRB). Located in northeastern Wyoming and extending into southeastern Montana, the PRB is one of Wyoming’s largest and most active hydrocarbon producing basins. The basin comprises various Mesozoic and Paleozoic strata with productive conventional and unconventional plays. Various studies have been done on both Mesozoic and Paleozoic stratigraphy within the basin. Historically, Cretaceous stratigraphy has been well studied and documented within the basin. However, continual industry innovations in the collection, development, and processing of subsurface geological data are making possible more refined understanding of Cretaceous stratigraphy in the basin.

This study focuses on the upper Lower Cretaceous Muddy Sandstone Formation and lower Upper Cretaceous Mowry Shale intervals at basin scale, and the implications for tectonic and eustatic evolution prior to the development of the PRB. Which controlled sedimentation, infilling, and Total Organic Carbon (TOC) weight percentage distributions of the two formations. There is a general agreement that the Mowry can be divided into upper, middle, and lower sections. The middle section has been found to contain the highest TOC percentages based on prior work done with geochemical analysis. This study will update these findings with newly collected digital well data and produce higher-density regional basin coverage with type wells, while also utilizing petrophysical calculation methods to determine TOC percentages to compare with current geochemical analysis.

The Muddy being an older conventional reservoir and the Mowry a more recent unconventional play, the collection and utilization of digitized well log data from Enverus Prism with Petrel Software, in conjunction with analysis of in-house core, provides an effective approach for producing refined structure, isochore, net sand, and TOC maps for the basin. This information can then be used in generating interpretations of sedimentation history, basin infilling, and TOC distribution. In addition, published type wells with correlated Paleozoic stratigraphy from the United States Geological Survey (USGS) are being used to generate PRB subsidence curves for multiple well locations throughout the basin to compare with maps and figures produced in Petrel. To further enhance sedimentation interpretations, U-Pb detrital zircon analysis is being conducted on the Muddy Formation sandstones collected from core. This data will be compared with published detrital zircon and subsidence work done in the western neighboring Big Horn Basin and its equivalent Muddy Formation interval.

View Presentation

GEOL2024CRENWELGE35886 GEOL

Tracking Soil Organic Carbon in an Urban Farm Near the Trinity River

Type: Graduate
Author(s): Julie Crenwelge Geological Sciences Christelle Fayad Interdisciplinary
Advisor(s): Omar Harvey Geological Sciences
Location: Second Floor, Table 5, Position 2, 11:30-1:30

Carbon is the elemental foundation for all living things on Earth. Soil carbon sequestration is a process in which carbon dioxide is removed from the atmosphere and stored in the soil. We want to examine the soil quality and the stability of carbon in an urban farm in North Texas by comparing measurements collected in October 2022 against measurements observed and collected in October 2023. Our research question is, “What is the effect of composting on the carbon quality and quantity at the farm?” The experimental points were chosen for comparison from a previous evaluation of a 1/3-acre section of a local urban farm next to the Trinity River in Fort Worth, Texas. We collected bulk soil samples at 0-15 cm and 15-30 cm depths from ten field points previously tested with an additional 3 new control points. Thermogravimetric Analysis (TGA) will be used to determine carbon quality by analyzing derivative weights change plots. The data collected suggests that within a year the experimental farm site has maintained a good quality of soil with minor acidification and compaction, as well as an increase in level and quality of carbon. The observed farm remains an appropriate site for providing food security, eliminating food waste while simultaneously sequestering carbon.

(Presentation is private)

GEOL2024FUENTES6954 GEOL

Hispanic youth population and culture in Texas – 1990

Type: Graduate
Author(s): Evangelina Fuentes Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences

This research pursues a process of census data investigation. By using demographic data, the population case can be made for a Hispanic youth market in 1990. This map will demonstrate Hispanic youth by county as well as bilingual households.

GEOL2024HENK25380 GEOL

Facies Characterization of the De Grey River's Delta Plain

Type: Graduate
Author(s): Henry Henk Geological Sciences Jacinto Garza Geological Sciences Matt Kelly Geological Sciences Mackenzie Moorhead Geological Sciences Tripp Smith Geological Sciences Andrew Winch Geological Sciences
Advisor(s): John Holbrook Geological Sciences Esayas Gebremichael Geological Sciences Simon Lang Geological Sciences Victorien Paumard Geological Sciences
Location: Second Floor, Table 6, Position 1, 11:30-1:30

View Presentation

GEOL2024KEITH32794 GEOL

Fluvial Architecture and Longitudinal Variance within the Castlegate Sandstone, Book Cliffs, UT

Type: Graduate
Author(s): Brayton Keith Geological Sciences John Holbrook Geological Sciences
Advisor(s): John Holbrook Geological Sciences
Location: Basement, Table 11, Position 2, 11:30-1:30

The upper Campanian Castlegate Sandstone in the Book Cliffs of Utah is a highly amalgamated fluvial sandstone well known as a reservoir analog for oil and gas. It comprises the lower Castlegate, the formation capping Bluecastle Tongue, and the floodplain-rich middle Castlegate deposits. The Castlegate is among the most studied fluvial deposits in the world. Despite this, there has yet to be a fluvial architecture analysis completed for these deposits which consider the longitudinal variance within the Castlegate fluvial system. This project assesses the average channel depth and discharge for the lower Castlegate, allowing analysis of the relationship between channel depth and discharge and their effect on facies distribution, depositional style and fluvial architecture in the outcrops. The lower Castlegate Sandstone is a tributary fluvial system with paleocurrents oriented primarily W-NW to E-SE comprised of stacked braided fluvial sands updip, and large, higher flow straight-meandering trunk channels downdip. Distal outcrops show three distinct depositional styles with the first representing a period of highstand during which carbonaceous floodplain and small channels of 0.5-1 m in depth and maximum 4 m in width were deposited; the second represents a localized tectonic uplift with large channels of ~15 m in width and depth and lateral accretion sets scaled accordingly, and finally the capping units of small amalgamated sands composed of classic braided style channels which represent a period of lowstand.

View Presentation

GEOL2024KELLY20438 GEOL

Insights into Sediment Transport in the DeGrey River Delta: Cyclonic Influences and Bedform Persistence

Type: Graduate
Author(s): Matthew Kelly Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences John Holbrook Geological Sciences
Location: Basement, Table 15, Position 2, 1:45-3:45

This study characterizes the sediment transport dynamics of the fluvial portion of the DeGrey River delta, a dryland tide/wave-dominated delta along the Pilbara coast of northwestern Australia. The primary focus lies in the discernment of discrete deposits resulting from annual flood events in this ephemeral river, primarily driven by cyclones and tropical depressions during the austral summer.

Methodology combines water discharge data, digital elevation models (DEM), and Sentinel-2 change detection to model flow depth and flooding extent during storm events, linking it to riverbed shear stress and the formation of discrete flood deposits. A time series of DEM datasets, consisting of a 1-m aerial survey (2021) and drone photogrammetry surveys (2022 and 2023) were used to generate differential DEMs to accurately detect yearly morphological changes within the river channel. Field surveys of selected sites indicating presence of flood deposits enabled characterization of grain size, water flow, and structural elements.

Cyclone floods in the region cause propagation of preexisting dunes, unit bars, and compound bars. These events predominantly shape lower-flow-regime structures within medium-grained sand. Unit bars exhibit down-climbing cross-stratified sets, with variations in thickness contingent on their location within the channel ranging from 0.4-1.6 meters. Lower-flow-regime bar and bedform morphology persists and propagates between flows, despite the occurrence of intense flash floods, often generating discharges in excess of 100,000 ML/day. This challenges conventional expectations of channel excavation and the preservation of upper-flow-regime bedforms in the wake of such extreme events.

(Presentation is private)

GEOL2024OBRIAN25465 GEOL

GEOCHEMICAL COMPARISON OF CENOMANIAN POST- BUDA MUDROCKS IN SOUTH TEXAS AND BIG BEND RANCH STATE PARK

Type: Graduate
Author(s): Payton OBrian Geological Sciences
Advisor(s): Richard Denne Geological Sciences
Location: Basement, Table 12, Position 2, 11:30-1:30

The Eagle Ford Shale (EFS) is an unconventional Cretaceous play producing crude oil and gas extending from northeast Leon County to the Mexico-American border in Southwest Texas. This Cenomanian -Turonian formation records the drowning of the Texas carbonate shelf and transgression of the Western Interior Seaway (WIS) into North America. Regional depositional patterns were affected by a series of changes in tectonic activity and eustatic sea level. The formation recorded a distinct change in oceanography during the Oceanic Anoxic Event 2 (OAE2) between the lower and upper EFS sections. The Boquillas Formation, age equivalent to the EFS, is found west of the producing region in Big Bend State and National Park. Outcrops of the EFS can be found along the Ouachita orogen and in the Big Bend region due to tilting during the Laramide orogeny and intrusive igneous activity. The largest known EFS equivalent outcrops have been found within the state park, however, no data had been collected in these locations. Evaluation of the geochemical properties and redox indicators of the depositional environment is essential to understanding the potential for hydrocarbons. The main method to acquire this data has been through the X-Ray Fluorescence Spectrometer (XRF). For this study I have utilized two handheld analyzers, the XRF along with the Laser Induced Breakdown Spectrometer (LIBS) for outcrop and core samples. Using both methods produces a more complete element suite including light elements not offered by XRF alone. Additionally, comparing LIBS data to the widely used XRF analyzer allows me to determine the practical usage of LIBS in petroleum geology.

View Presentation

GEOL2024PAYBLAS59000 GEOL

Binding Dynamics of Mono- and Di-carboxylates in a Boehmite-Bayerite Series: A Flow-Adsorption Microcalorimetry Study

Type: Graduate
Author(s): Caitlin Payblas Geological Sciences
Advisor(s): Omar Harvey Geological Sciences
Location: Third Floor, Table 6, Position 2, 1:45-3:45

It is well documented that the major sorbents in soils are organic matter, silicate clays, and metal-oxyhydroxides. In particular, interactions between organic matter and fine-grained minerals, such as aluminum oxides, have been cited as important stabilizers of the humic matter in soils, which has large implications for the storage of anthropogenic carbon and pollutants (i.e., hydrophobic organic acids) in the environment (Keil and Mayer 2014). Utilizing simple organic acids containing functional groups present in humic compounds enhances understanding of metal-hydroxide and organic acid interactions at the mineral-water interface. The energetics of these interactions largely depend on the sorbate, the physico-chemical characteristics of the sorbent, and solution conditions (e.g. pH).
Ongoing work in our lab, using flow-adsorption microcalorimetry (FAMC) to directly and systematically measure energy dynamics of sorption at the oxide-water interface indicated that structural water in the lattices of boehmite and boehmite-bayerite mixed-phased samples increased binding energetics of acetate, propionate and butyrate at pH 5. The presentation will cover energy dynamics data collected for these mono-carboxylates and their respective di-carboxylate counterparts (oxalate, malonate, and succinate) binding onto a series of synthesized boehmites and bayerites. Focus will be placed on resolving effects of carboxylate carbon chain length, the number and acidity of carboxylates, and aluminum oxide surface properties on binding dynamics.

(Presentation is private)

GEOL2024WRIGHT62971 GEOL

Saltwater Intrusion Along the Texas Gulf Coast: Tracking Wetlands Distribution, Adaptation, and Migration

Type: Graduate
Author(s): Robert Wright Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Basement, Table 6, Position 1, 1:45-3:45

Saltwater Intrusion Along the Texas Gulf Coast: Tracking Wetlands Distribution, Adaptation, and Migration

Abstract

Climate change trends in recent decades have led to sea level rise (SLR) due to increased polar ice melting. As the sea level rises, saltwater concentrations increase inland, compelling wetland species to adapt or migrate. This added stress on wetland species hampers their ability to offer ecosystem services (ES). This study will investigate the impact of saltwater intrusion (SWI) on coastal wetland species along the Texas Gulf Coast. Supervised and unsupervised classification will be the primary methods used to accurately assess the loss, gain, or migration of different groups of wetland species over two decades. Additionally, the potential effect of wetland distribution and species changes on the ES will be investigated by analyzing the spatial extent of storm surge flooding resulting from land-falling hurricanes two decades ago versus the present.

(Presentation is private)

INTR2024ALANIS56219 INTR

Exploring Educational Approaches in the Assessment of Self-Reported Empathy Scores in Emergency Medicine Residents

Type: Graduate
Author(s): Naomi Alanis Interdisciplinary
Advisor(s): Hao Wang Interdisciplinary
Location: Second Floor, Table 7, Position 1, 1:45-3:45

Empathy, defined as "the process of understanding a person's subjective experience by vicariously sharing that experience while maintaining an observant stance" (Zinn, 1993, p. 306) is a skill that can be challenging for many learners in post-graduate medical education. Numerous prior studies have emphasized the importance of empathy among healthcare physicians. They have shown that physician empathy scores are not only inversely correlated with physician burnout but also directly correlated with patient satisfaction (Byrd et al., 2021). Furthermore, research indicates that there exists an inverse correlational relationship between post-graduate years and empathy levels (Wolfshohl et al., 2019).

Acknowledging the significance of empathy as a crucial skill, efforts have been made to impart it to medical professionals using diverse instructional approaches. Batt-Rawden et al. (2013) conducted a systematic review of methods employed in teaching medical students, while Patel et al. (2019) examined empathy and compassion education in medical training. However, the findings from both reviews failed to conclusively identify a single, effective instructional strategy for enhancing empathy scores among graduate medical education learners. Nonetheless, they highlighted the potential for enhancing clinicians' empathy scores through specific educational methods and pinpointed five clinical behaviors as particularly influential on individual empathy scores. Moreover, they suggested that activities should adopt a "relationship-centered" approach (Batt-Rawden et al., 2013, p. 1175). In a separate study, Hojat et al. (2013) outlined a rubric delineating the three roles of a physician and their associated performance elements.

In this prospective multi-center survey study, forty-five (45) EM residents from an ACGME-sponsored three-year Emergency Medicine (EM) residency program will complete three educational sessions using team-based learning instructional strategies on empathy. The sessions will occur monthly across three consecutive months from in the spring and summer of 2024, each lasting for one hour in length during resident didactics. Empathy scores will be obtained from all participants via the Jefferson Scale of Empathy (JSE) in a pretest-posttest manner. The pre-test questionnaire will be administered before (pre-test) the educcational sessions and after the residents have completed all of the team-based learning instructional activities (post-test).

While there has been no prior application of team-based learning to enhance empathy scores, Borges et al. (2012) employed a team-based approach to instruct third-year medical students on emotional intelligence. Given that this approach also incorporates similar "relationship-centered" tasks, we posit that team-based learning could serve as a suitable instructional strategy for improving empathy scores.

References:
1. Batt-Rawden, Samantha A. MBChB; Chisolm, Margaret S. MD; Anton, Blair; Flickinger, Tabor E. MD, MPH. Teaching Empathy to Medical Students: An Updated, Systematic Review. Academic Medicine 88(8):p 1171-1177, August 2013. | DOI:10.1097/ACM.0b013e318299f3e3
2. Boisse, A., Porath, C. “Practice Empathy as a Team.” Harvard Business Review, (February 2023): https://hbr.org/2023/02/practice-empathy-as-a-team.
3. Borges, N., Kirkham, K., Deardorff, A. & Moore, J. (2012) Development of emotional intelligence in a team-based learning internal medicine clerkship, Medical Teacher, 34:10, 802-806, DOI: 10.3109/0142159X.2012.687121
4. Byrd, J., Knowles, H., Moore, S., Acker, V., Bell, S., Alanis, N., Zhou, Y., d'Etienne, J. P., Kline, J. A., & Wang, H. (2021). Synergistic effects of emergency physician empathy and burnout on patient satisfaction: a prospective observational study. Emergency medicine journal: EMJ, 38(4), 290–296. https://doi.org/10.1136/emermed-2019-209393
5. Hardee JT. An Overview of Empathy. Perm J. 2003 Fall;7(4):51–4. PMCID: PMC5571783.
6. Hojat, M., Mangione, S., Nasca, T. J., Cohen, M. J. M., Gonnella, J. S., Erdmann, J. B., Veloski, J., & Magee, M. (2001). The Jefferson Scale of Physician Empathy: Development and Preliminary Psychometric Data. Educational and Psychological Measurement, 61(2), 349–365. https://doi.org/10.1177/00131640121971158
7. Patel, S., Pelletier-Bui, A., Smith, S., Roberts, M. B., Kilgannon, H., Trzeciak, S., & Roberts, B. W. (2019). Curricula for empathy and compassion training in medical education: A systematic review. PloS one, 14(8), e0221412. https://doi.org/10.1371/journal.pone.0221412
8. Wolfshohl, J. A., Bradley, K., Bell, C., Bell, S., Hodges, C., Knowles, H., Chaudhari, B. R., Kirby, R., Kline, J. A., & Wang, H. (2019). Association Between Empathy and Burnout Among Emergency Medicine Physicians. Journal of clinical medicine research, 11(7), 532–538. https://doi.org/10.14740/jocmr3878
9. Zinn W. The empathic physician. Arch Intern Med. 1993 Feb 8;153(3):306-12. PMID: 8427535.
10. Hojat, M., Erdmann J.B. & Gonnellak, J. (2013). Personality assessments and outcomes in medical education on the practice of medicine. AMEE Guide No. 79, Medical Teacher, 35(7), 1267-1301

View Presentation

NTDT2024MROSLA4929 NTDT

Impact of A Short-Term Antibiotic Cycle on Glucose Control in Adults with Overweight or Obesity

Type: Graduate
Author(s): Jessica Mrosla Nutritional Sciences Genevieve Aiwonegbe Psychology Melissa Fernandez Nutritional Sciences Katie Harnen Nutritional Sciences Olivia Landis Nutritional Sciences Jade Nesbitt Nutritional Sciences
Advisor(s): Elisa Marroquin Nutritional Sciences Sarah McKinley-Barnard Interdisciplinary Ryan Porter Interdisciplinary
Location: Basement, Table 2, Position 1, 1:45-3:45

Background: Dietary fiber has been consistently associated with beneficial effects on body composition and insulin resistance in humans, potentially acting through alterations in the gut microbiota. Murine studies have shown fiber to be able to mitigate antibiotic-induced gut microbial perturbations and subsequent insulin resistance.

Objective: This study aims to investigate the effect of a short-term antibiotic cycle on glucose control. Furthermore, we will also explore potential associations between dietary fiber intake, glucose control, and body composition.

Methods: This preliminary analysis, derived from a larger randomized controlled trial, prospectively evaluated 11 adults with overweight or obesity, lacking a diabetes diagnosis. Glucose control and insulin resistance, measured via serum, fasting glucose, fasting insulin and HOMA index, were analyzed before and after a short-term antibiotic course (Vancomycin 500 mg/8h for 3 days) and analyzed at Bioreference Laboratories. Total dietary fiber intake was measured through 24h dietary records collected over six days and analyzed using ESHA Food Processor Nutrition Analysis Software. Body composition was evaluated through DEXA and BodPod scans at the TCU Applied Metabolic & Physiology Lab. SPSS was utilized for all statistical analyses. A p-value <0.05 was considered statistically significant.

Results: A 3-day antibiotic cycle of Vancomycin caused a significant increase in fasting insulin 1.50 + 2.08 (p=0.037) and fasting glucose 5.67 + 1.53 (p=0.023), but not HOMA-IR 0.17 + 0.38. No significant correlations were found between fiber intake and chronic glucose control, antibiotic-induced glucose control changes, insulin resistance, or body composition. Participants consumed an average 15.58 grams of fiber per day with females (n=6) meeting 65.5% of fiber RDA for females (25 g/day) and males (n=5) meeting 38.5% of RDA (38 g/day).

Conclusion: The outcomes of this study illustrate the ability of a short-term antibiotic cycle, specifically Vancomycin, to induce harmful effects on glucose control in humans. These findings highlight the need for further research into understanding accumulated exposure risk as well as methods for the prevention and treatment of antibiotic-induced metabolic disruption.

View Presentation

PHYS2024BRANNON63900 PHYS

Egyptian Blue Nanosheets as a Novel Bioimaging Agent

Type: Graduate
Author(s): John Brannon Physics & Astronomy
Advisor(s): Yuri Strzhemechny Physics & Astronomy Anton Naumov Physics & Astronomy
Location: First Floor, Table 1, Position 2, 1:45-3:45

Since the ancient times, a common pigment used for expression in clothes and art was egyptian blue (EB). Today, instead of using this cuprous silicate as a way for one’s personal expression, we will provide reasons why this pigment can be used as a novel bioimaging agent for cell work. Finding another bioimaging agent for cell-use is always an advantage because each agent supplies their own advantages when working in cells. So the more agents we have in our possession, the more angles we can take on a problem. To be considered a bioimaging agent, it needs to dissolve in polar solvents (mainly water), be non-toxic, and display fluorescence in the near-infrared range of the optical spectrum. EB has all three of these properties with the right preparation. Sonicating EB reduces their size to become extremely small sheets, which increases interaction with water molecules to ultimately allow the sheets to dissolve within the water solvent. These sheets are on the nanoscale, so they will be referred to as EB nanosheets (EBNS). EBNS fluoresce in the near infrared and have no history of being toxic. EBNS have the capability of emitting more photons per photons absorbed compared to most materials (high quantum number). This novel material also does not quench fluorescently as easily as other agents due to its copper atoms. EBNS have strong Raman vibrational modes that can help image cells too. We want to highlight why EBNS can be an effective platform for future bioimaging applications and ultimately, cancer imaging/treatment applications.

View Presentation

PHYS2024GERG27594 PHYS

Nonlinear Analysis of HIV Type-1 Syncytia Formation

Type: Graduate
Author(s): Anthony Gerg Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Third Floor, Table 3, Position 2, 1:45-3:45

Human Immunodeficiency Virus(HIV) Type-1 has been studied heavily for decades, yet one of the main areas that has yet to be thoroughly researched is that of the cell-cell fusion. This cell-cell fusion creates multi-nucleated cells called syncytia. Cell-cell fusion of HIV can be regulated via cytosine arabinoside(AraC), a chemotherapy agent. Previous work has shown that syncytia and their formation can be modeled via ordinary differential equations, with an Erlang time distribution measuring the fusion of the cells, though this has not been applied to studying drug-treated systems. By applying the mathematical model to the spread of syncytia under drug treatment, we can gain novel information about the formation of syncytia and its regulation by AraC. We find that AraC affects the syncytia formation rate and slightly affects fusions fusion rates, and requires inclusion of the density of syncytia in the mathematical model. This information is much needed for explaining the full workings of HIV in vitro, and will further help the push to develop full models in regards to HIV type-1

View Presentation

PHYS2024GLAZE19067 PHYS

Merging MaNGA and Hubble to Explore Galactic Environments

Type: Graduate
Author(s): Andrew Glaze Physics & Astronomy
Advisor(s): Kat Barger Physics & Astronomy

Inflowing and outflowing gas in a galaxy’s environment provides an avenue for recycling star-forming materials. To probe these galactic environments, we look for edge-on galaxies with background active galactic nuclei (AGN) at a range of projected positions and orientations relative to the host galaxies. The AGN serve as bright background flashlights that shine light through the intervening gas, enabling us to study the composition and physical properties of the CGM. We use archival spectroscopic observations from the Hubble Space Telescope (HST) and emission-line spectra from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Survey to probe these clouds. We find 9 existing galaxy-AGN pairs in the archive that meet our criteria, with more to come with future observations and an in-progress proposal for the next HST observation cycle. Our data for the galaxies include spatially-resolved maps of gas density, gas & stellar motion, and gas ionization, which allow us to parameterize quantities like star-formation rates. By comparing the data across a large sample, we assess the influence that a galaxy’s environment has on its star formation.

PHYS2024HORTON31355 PHYS

Go with the Flow: Measuring the Physical Properties of the Magellanic Stream

Type: Graduate
Author(s): April Horton Physics & Astronomy Kat Barger Physics & Astronomy Frances Cashman Physics & Astronomy Andrew Fox Physics & Astronomy Dhanesh Krishnarao Physics & Astronomy Scott Lucchini Physics & Astronomy Naomi McClure-Griffiths Physics & Astronomy Suraj Poudel Physics & Astronomy Jo Vazquez Physics & Astronomy
Advisor(s): Kat Barger Physics & Astronomy
Location: Second Floor, Table 3, Position 3, 11:30-1:30

Massive stars die through powerful supernova explosions, which produce clouds of gaseous debris that can be propelled to the outskirts of the galaxy. The material on the outer edge is more vulnerable to processes occurring in the environment. These processes pull and tug the debris and can form a gaseous stream flowing from the galaxy. One prominent example in the night sky is the Magellanic Stream (MS), which flows out of our neighboring galaxy, the Large Magellanic Cloud (LMC). With observations from the Hubble Space Telescope, we are examining the absorption features of light from background stars that pass through the gaseous material of the MS enabling us to measure its physical properties. We traced the small-scale motion of the neutral hydrogen gas using emission-line data from the Galactic All-Sky Survey and the Galactic Australian Square Kilometre Array Pathfinder programs to determine where the MS begins relative to the LMC. Comparing these observations, we find the MS in the absorption spectra on the nearside of the LMC between +235 ≤ vlsr ≤ +350 km/s. By investigating the physical properties of the MS, we can better understand how the environmental processes shaped its formation.

View Presentation

PHYS2024JOHNSON8395 PHYS

Studies of Surface Defect in Microcrystalline α-GaOOH and β-Ga2O3

Type: Graduate
Author(s): Dustin Johnson Physics & Astronomy Pavan Ahluwalia Physics & Astronomy Tiffany McHenry Physics & Astronomy Zachary Rabine Physics & Astronomy Madeline Smit Physics & Astronomy
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Basement, Table 4, Position 2, 1:45-3:45

Surface defects in nano- and micro-crystals strongly affect performance of materials in applications, necessitating elucidation and control of those defects. The beta variant of gallium oxide (β-Ga2O3) in nano- and microcrystalline form is attracting a strong interest due to its potential applications in such critical areas as biological therapeutics, optoelectronics, and catalysis. In our studies, β-Ga2O3 crystals are produced through a simple bottom-up hydrothermal method, which yields, as a first step, an α-GaOOH precursor, which then undergoes calcination to bear the final product. Variation of growth parameters allows for a synthesis of particles with tunable morphologies and surface structures. Optoelectronic and physicochemical properties of both α-GaOOH & β-Ga2O samples are studied by a range of experimental techniques. These investigations address, among others, the surface defect properties. We also evaluate the impact of surface defects and particle morphologies on the antibacterial action α-GaOOH.

View Presentation

PHYS2024MYERS54098 PHYS

Tracing the Chemistry of the Milky Way: Radial Variation and the Identification of Supernova Fingerprints

Type: Graduate
Author(s): Natalie Myers Physics & Astronomy John Donor Physics & Astronomy Jonah Otto Physics & Astronomy Taylor Spoo Physics & Astronomy Alessa Wiggins Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Third Floor, Table 10, Position 1, 11:30-1:30

Open clusters are groups of stars with the same age, chemistry, and velocity. These characteristics make open clusters powerful tools for tracing the dynamic and chemical evolution of our home galaxy, the Milky Way. The goal of the Open Cluster Chemical Abundance and Mapping (OCCAM) survey is to identify and analyze a large sample of open clusters with a wide range of chemical abundances. To do this, it utilizes the infrared spectra provided by the Sloan Digital Sky Survey’s (SDSS) APOGEE spectrograph and the kinematic data from the Gaia Space Telescope to form a large survey of open clusters with uniformly derived chemical abundances (e.g., C, Mg, Si, Al, Fe, Ni). Here, we present the results from the OCCAM analysis of the latest SDSS/APOGEE data release. This dataset of 153 different open clusters, including 2061 individual stars, is used to investigate the variation of the Milky Way’s chemistry for multiple different abundance groups. In addition to this dataset, we also present the current status of new optical observations that will allow us to expand the wavelength coverage for each star and trace more elements. These new observations enable us to accurately decipher the chemical fingerprints from ancient supernovae (e.g., Y, Ba, Ce, Nd, Eu) and expand our analysis.

View Presentation

PHYS2024OTTO6504 PHYS

Digging through the Galactic Graveyard: Chemistry and Ages of “Dead” Milky Way Satellite Galaxies

Type: Graduate
Author(s): Jonah Otto Physics & Astronomy Taylor Spoo Physics & Astronomy Ellie Toguchi-Tani Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Second Floor, Table 5, Position 3, 11:30-1:30

Characterizing Galactic sub-structures is crucial to understanding the assembly history and evolution of the Milky Way. To accomplish this, we need to identify and analyze the accreted sub-structures. With ESA Gaia and SDSS-IV/APOGEE, studies have been done to analyze the kinematics and chemical abundances, respectively. However, one challenge that still remains is deriving reliable ages for these sub-structures. We utilize the new relationship between the carbon to nitrogen ratio and stellar age derived by the OCCAM team, which has recently been extended to the metal-poor regime, to probe stars within the sub-structures in the metallicity range -1.2 ≤ [Fe/H] ≤ +0.3 dex. This allows us to determine the ages of a greater number of stars within these sub-structures, which paints a more coherent picture of the original galaxies that have been disrupted to form the Milky Way’s halo. Using the sample of halo sub-structures in Horta et al. (2023), we apply the newly extended calibration to determine ages of stars within these sub-structures and compare them to previous age estimates.

View Presentation

PHYS2024PANDA61113 PHYS

Tiny Dots, Big Feelings: Graphene Quantum Dots Sniffing Out Dopamine

Type: Graduate
Author(s): Mudit Panda Physics & Astronomy Tejas Sukesh Physics & Astronomy Ugur Topkiran Physics & Astronomy Alina Valimukhametova Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Third Floor, Table 4, Position 2, 11:30-1:30

Graphene quantum dots (GQDs) is an emerging nanocarbon platform that is now actively utilized for therapeutic applications. Their increasing popularity arises due to relatively high biocompatibility, water solubility, optical properties enabling multi-color fluorescence imaging and the ease of functionalization with a variety of therapeutic agents. Such properties pave the way for a variety of imaging and sensing applications. Herein, we are utilizing rGQDs (reduced graphene quantum dots) synthesized top down from reduced graphene oxide for dopamine sensing. Detecting dopamine can provide insights about the neural health and the activity of neurotransmitters in the brain. However, due to the presence of dopamine receptors throughout our body, this will also help assess other vital functions including secretion of pituitary hormones [1], gut motility [2], immunomodulatory effects in inflammation-related diseases [3][4] and cardiovascular effects (dopamine can act as both autocrine or paracrine compound in the mammalian heart) [5]. In our work rGQD near-infrared (NIR) fluorescence appears to react proportionally to dopamine concentration within the range of 1000ng/ml – 1ng/ml as assessed with NIR fluorescence imaging of dopamine/rGQD interactions on cotton discs and biocompatible gels as well as with NIR fluorescence spectroscopy. This rapid NIR response and the capability of dopamine sensing in gel matrix suggests the potential for detection of blood-relevant dopamine concentrations in vivo, which will be explored with GQD-based implantable sensors. In addition to the development of a novel non-invasive dopamine sensing mechanism, the present study will aid in gaining valuable insight into GQD properties in vivo and their potential for in vivo analyte detection.
References:
1. Nira Ben-Jonathan, Robert Hnasko, Dopamine as a Prolactin (PRL) Inhibitor, Endocrine Reviews, Volume 22, Issue 6, 1 December 2001, Pages 724–763, https://doi.org/10.1210/edrv.22.6.0451
2. Graeme Eisenhofer, Anders Åneman, Peter Friberg, Douglas Hooper, Lars Fåndriks, Hans Lonroth, Béla Hunyady, Eva Mezey, Substantial Production of Dopamine in the Human Gastrointestinal Tract, The Journal of Clinical Endocrinology & Metabolism, Volume 82, Issue 11, 1 November 1997, Pages 3864–3871, https://doi.org/10.1210/jcem.82.11.4339
3. Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev. 2023 Jan;75(1):62-158. doi: 10.1124/pharmrev.122.000618. Epub 2022 Dec 8. PMID: 36757901; PMCID: PMC9832385.
4. Feng YF and Lu Y (2021) Immunomodulatory Effects of Dopamine in Inflammatory Diseases. Front. Immunol. 12:663102. doi: 10.3389/fimmu.2021.663102
5. Neumann J, Hofmann B, Dhein S, Gergs U. Role of Dopamine in the Heart in Health and Disease. Int J Mol Sci. 2023 Mar 6;24(5):5042. doi: 10.3390/ijms24055042. PMID: 36902474; PMCID: PMC10003060.

View Presentation