Filter and Sort


Spatial Analysis of the Livability of Fort Worth Using Multi-Criteria Decision Making Approaches

Type: Undergraduate
Author(s): Matt Kelly Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Third Floor, Table 2, Position 2, 11:30-1:30

This study will develop (livable) suitability index for areas within Fort Worth with respect to the availability of various amenities (walkability, parks, etc.), public transport, proximity to fresh produce and entertainment (restaurants, etc.), and other relevant services. This is important as the City of Fort Worth has some of the lowest transit scores compared to major cities across the US especially with those having similar population as Fort Worth. Several spatial analysis techniques including proximity and overlay analysis will be undertaken using tools in ArcGIS Pro and ArcGIS Online to attain the objectives of the study.

(Presentation is private)


Synthetic Nanomaterials: An Environmental Twist of Fate

Type: Undergraduate
Author(s): Brooke Newell Geological Sciences
Advisor(s): Omar Harvey Geological Sciences
Location: Basement, Table 9, Position 1, 1:45-3:45

As the nature and quantity of new/novel nanomaterials continue to expand to meet industrial, medical, and domestic demands, their accidental or intentional release becomes inevitable. To this end, an evolving understanding of the interaction dynamics between nanomaterials and naturally occurring geomaterials is central to supporting continued sustainable development and use of nanomaterials. The current study explores the chemodynamics of the organic nanomaterial, polyamidoamine (PAMAM) dendrimers, binding to (and debinding from) ferrihydrite. Specific focus is placed on how PAMAM size and pH affects the reaction between three carboxyl-terminated PAMAMs (Gx.5-COOH) sorbing/desorbing to/from the variably-charged ferrihydrite (FFH). Since both ferrihydrite and PAMAM exhibit pH-dependent variation of speciation, it is expected that binding/debinding dynamics of differing sizes of PAMAM will vary. Investigating the quantity, rate, and dynamics of these reactions provides insight into the type of bonding occurring (physiosorption, electrostatic bonding, or hydrogen bonding) and the location of bonding (surface versus micropore spaces). The information gained from this study will help to develop a more holistic picture of the environmental fate of synthetic nanomaterials.

(Presentation is private)



Type: Graduate
Author(s): Ursula Nunez Geological Sciences Brooke Newell Geological Sciences Benjamin Strang Biology Kimberlee Whitmore Biology
Advisor(s): Essays Gebermichael Geological Sciences Omar Harvey Biology
Location: Third Floor, Table 9, Position 2, 11:30-1:30

In Tarrant County, Texas, food deserts affect approximately 275,000 residents. Chronic health conditions affect households living in food-insecure communities, leading the government to spend billions of dollars treating preventable diseases. Implementing sustainable urban agriculture in areas of high need to produce food using geospatial technology to aid in soil management can play an important role in helping farmers. The objective is to create an urban soil analysis map from the data collected on the soil properties, distribution, and variability of how these properties affect landscapes.

View Presentation


The Future of Carbon Emission Disposal

Type: Graduate
Author(s): Ryan Pastor Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences
Location: First Floor, Table 3, Position 1, 1:45-3:45

The aim for this project is centered around understanding carbon sequestration and the potential for carbon capture, utilization, and storage (CCUS) in the United States of America. An in depth look at the CO2 emissions for given areas of the U.S. will be looked at to gain an idea of where localized hotspots for emissions are located and how the impact of these emissions can be reduced using CCUS. By coupling emission data with existing infrastructure data (such as active and abandoned wells, pipelines, storage facilities, etc.) an outlook on the possibility of CCUS and reduction of emissions can be achieved. Geologic formations also play a specific role in how CCUS works. Understanding the various rock formations below and how the injected CO2 will be sealed away deep in the ground is a vital piece for any CCUS project. Combining the geological data with the emissions and infrastructure data will piece together a variety of information to better understand the possibility of reducing carbon emissions in various areas around the United States.

View Presentation


Depositional Environment and Reservoir Characteristics of Upper Woodbine Sandstones in Outcrop at Lake Grapevine, Texas

Type: Graduate
Author(s): Ryan Pastor Geological Sciences
Advisor(s): Richard Denne Geological Sciences
Location: Second Floor, Table 4, Position 3, 11:30-1:30

The Middle Cenomanian Woodbine sandstones act as a major reservoir system for many large oil fields throughout East Texas. Although numerous studies have been completed on Woodbine outcrops within DFW Metroplex, none have used modern techniques or tools, or utilized facies model concepts to study their reservoir characteristics or environment of deposition. Prior studies interpreted these outcrops as a shelf-strandplain coastal setting or a fluvial-dominated delta plain. However, this study of Woodbine outcrops along Lake Grapevine identified evidence of significant tidal influence.
The focus of this project was to determine the depositional environment and obtain a better understanding of the reservoir characteristics of the upper Woodbine (Lewisville) sandstones found in outcrop along the southeastern shores of Lake Grapevine in Tarrant County, TX. A detailed study of the lithofacies, ichnofacies, and biofacies, along with handheld spectral gamma ray and permeameter analyses, from 8 measured sections were conducted to identify representative lithofacies. Oversized thin-sections were made to estimate porosity ranges for each lithofacies, and to identify the types and extent of cement in the sandstones. Photomosaics were utilized to delineate sand body geometries by tracing out the lateral extent of the units and identifying significant surfaces and potential fluid barriers or baffles.
Seven lithofacies were distinguished in the outcrops of the study area: Bioclastic, massive bioturbated sandstone, mudstone, heterolithic sandstone and mudstone, crossbedded sandstone, flaser-bedded sandstone, and cemented sandstone. Two of the most common and laterally continuous lithofacies, the massive bioturbated and crossbedded sandstones, also had the best reservoir characteristics, with average porosities of 26% and 27%, and average measured permeabilities of 6,300 mD and 10,700 mD, respectively. The lower permeabilities in the massive bioturbated sandstone are related to clay-rimmed burrows. The bioclastic, mudstone, and cemented sandstone lithofacies are potential barriers to fluid flow, as they all have low porosities (less than 2%) and permeabilities (less than 200 mD).
The data acquired during this study were all consistent with an interpretation of a tidally-influenced estuarine to shallow marine depositional environment for the upper Woodbine in the study area, which differs from previous studies. The high abundance of trace fossils that are commonly found in tidally-influenced depositional systems, including Conichnus/Bergaueria, Cylindrichnus, Planolites, Palaeophycus, Rosselia, Rusophycus, Skolithos, and Thalassinoides, coupled with the presence of heterolithic deposits and common oyster shells led to this interpretation.
This study is the first to analyze outcrops of the Lewisville (upper Woodbine) sandstones in their type area specifically for their reservoir characteristics, and to document tidal influences during deposition. Considering the considerable volumes of hydrocarbons that have been produced from the Woodbine in the adjacent East Texas Basin, this study could provide valuable data for building reservoir models of upper Woodbine sandstones for both hydrocarbon production and potential CO2 sequestration.

View Presentation


Analyzing the Change in Crop Yields Following Recent Drought in Texas

Type: Undergraduate
Author(s): Caleb Perkey Geological Sciences Bradley Roe Interdisciplinary
Advisor(s): Esayas Gebremichael Geological Sciences
Location: Basement, Table 2, Position 2, 1:45-3:45

This research will examine the change in size of local aquifers in Texas to determine how drought affects crop yield in Texas, for the aquifers scattered about Texas are the major source of irrigation for farmers in the state. This will be demonstrated by assessing conditions in the San Antonio area (as a case study) due to the severe drought that has affected the area for the past couple of months. Several spatial datasets including remote sensing datasets and results derived using different analysis tools in GIS will be utilized to demonstrate the change in aquifer size and volume during the investigated period.

(Presentation is private)


The classification of three unknown meteorites from Northwest Africa

Type: Undergraduate
Author(s): Liam Pittenger Physics & Astronomy
Advisor(s): Rhiannon Mayne Environmental Sciences
Location: Third Floor, Table 3, Position 3, 11:30-1:30

More meteorites are found in North-West Africa every year than in any other location on the earth’s surface. These meteorites are sold and will either enter a scientific collection, or that of a private collector. In the latter case, a meteorite may never be officially classified, which means that it is not recognized by the scientific community as a new meteorite find.. The meteorite classification process is led by the Meteoritical Society, who nominate meteorite researchers to serve on the Meteorite Nomenclature Committee. This committee is responsible for the peer review of all meteorite classification submissions, and to ensure the donation of a scientific repository sample. After this, an official name is assigned and the meteorite is entered into the Meteoritical Bulletin Database (MetBull). MetBull is an archive of all meteorites recognized by the Meteoritical Society and contains basic information about each meteorite; for example, its classification, the location it was found, and a brief description of the sample studied.

The Monnig Meteorite Collection at TCU contains a number of unclassified meteorite samples. In this study, we will examine three unknown meteorites and determine the meteorite type in terms of: (1) the type of body they come from, (2) the minerals and textures they contain, (3) their mineral compositions and, (4) their thermal history. This data will then be submitted to the Meteorite Nomenclature Committee for official classification.

View Presentation


Crafts & Conversations

Type: Undergraduate
Author(s): Rima Abram Interdisciplinary Erica Kaminga Interdisciplinary Allison Regan Interdisciplinary Mariana Zollinger Interdisciplinary
Advisor(s): Jessica Alvarez Interdisciplinary
Location: Third Floor, Table 7, Position 2, 11:30-1:30

Crafts & Conversations was established to foster community among TCU students and the residents of a local retirement facility, Trinity Terrace. During monthly meetings, students and residents share their stories while collaborating on engaging craft activities, including murals, cross-stitching, snow globes, suncatchers, pillows, and upcycled terrariums. TCU students who volunteer in these monthly meetings build meaningful friendships, combat stereotypes against the elderly, and improve communication and leadership skills. In addition, each event opens with a performance by TCU music students, enabling them to cultivate their craft and share their talent. Even throughout the pandemic, Crafts & Conversations nurtured memories and connections through Zoom and masked in-person meetings. With a commitment to sustainability, this project will continue to enrich the lives of Trinity Terrace residents and provide dedicated student volunteers with opportunities to strengthen the Fort Worth community.

View Presentation


Women's Health Clinics with Mercy Clinic of Fort Worth

Type: Undergraduate
Author(s): Morgan Bertrand Biology Allison Regan Biology
Advisor(s): Mikaela Stewart Biology
Location: Basement, Table 12, Position 2, 1:45-3:45

Mercy Clinic of Fort Worth is a free health clinic that provides care to the underserved population, largely comprised of uninsured adults, in south Fort Worth. Services at Mercy Clinic include wellness checkups, sick visits, and well-woman visits, as well as some dental procedures, labs, and prescription services. TCU students of the Pre-Health Professions Institute consistently volunteer at Mercy Clinic, and TCU’s relationship with Mercy Clinic has continued to grow especially with the new addition of TCU’s Burnett School of Medicine to the Fort Worth community. A current collaboration between Mercy Clinic and the Burnett School of Medicine is aimed at providing clinics for women to get well-women exams such as pap smears and breast exams. Funds provided by the Experiential Projects to Impact the Community (EPIC) Grant were used to assist with the cost of supplies, such as speculums and drape sheets, for these women’s clinics. The goals of this community project are to serve the Fort Worth community by providing Mercy Clinic with materials and volunteers, to emphasize the importance of women’s health and knowledge about it, and to grow TCU Pre-Health’s relationship with the Burnett School of Medicine and Mercy Clinic.

View Presentation


Pickleball With a Purpose

Type: Undergraduate
Author(s): Michael Delgado Interdisciplinary Philip Dodd Interdisciplinary
Advisor(s): Philip Dodd Interdisciplinary
Location: Basement, Table 10, Position 1, 11:30-1:30

After-school programs can be highly beneficial to elementary school students. Pickleball With a Purpose is a weekly after-school program founded by TCU students with support from the Experiential Projects to Impact the Community (EPIC) committee. This program works with a local elementary school in Crowley Independent School District (CISD). Pickleball appeals to all ages because it can be picked up relatively quickly, regardless of skill level. As part of the program, pickleball was introduced to 4th and 5th graders at Meadowcreek Elementary by teaching a two-week clinic introducing foundational paddle skills during P.E. classes. Students in the after-school program engage in clinics, drills, and games to further develop their communication skills while fostering connections with mentors from TCU. The EPIC committee's funding and our partnership with the Selkirk Growth Program have allowed us to supply the elementary school with equipment such as nets, balls, and paddles. The purpose of the Meadowcreek Pickleball Club is to provide elementary school students with a safe environment where they can grow as individuals while learning a new sport.

View Presentation


Healthy Food Insecurity

Type: Undergraduate
Author(s): May Nguyen Biology Thien Ly Nguyen Biology
Advisor(s): Maria Martinez Nutritional Sciences
Location: Third Floor, Table 4, Position 3, 1:45-3:45

View Presentation


New Smiles Drive

Type: Undergraduate
Author(s): Cayla Prophater Interdisciplinary Christian Cargile Interdisciplinary Aimee Garibay Interdisciplinary Emma Graham Interdisciplinary Macyn Willingham Interdisciplinary
Advisor(s): Heidi Conrad Interdisciplinary
Location: Second Floor, Table 1, Position 2, 11:30-1:30

Even though they are completely preventable, cavities are the leading chronic childhood disease in America. The “New Smiles Drive” is a community outreach project with a mission to improve Fort Worth's oral hygiene knowledge and access to essential hygiene supplies. This project has provided dental supplies and hygiene education to the patients at the Mercy Clinic of Fort Worth. The donation of dental hygiene bags is instrumental in providing the materials necessary for quality health care. However, the donations are only half of the mission. Each donation bag includes a laminated education card containing detailed instructions on how to maintain good oral health as well as recommendations provided by Fort Worth dentists. The educational aspect of this project will leave a lasting impact on the community and teach the community essential oral hygiene care.

View Presentation


Drowning Prevention and Water Safety Clinics

Type: Undergraduate
Author(s): Quinceola Reid Biology Emily Van Dyck Biology
Advisor(s): Anthony Crowder Interdisciplinary
Location: Basement, Table 7, Position 1, 11:30-1:30

Swimming is a skill that is often assumed to be commonplace. However, in a study from 2017-2021, 411 children fatally drowned in Texas; 32 drownings were from Tarrant County (Texas Child Drowning Statistics). In 2019, 23 Tarrant County drowning deaths were among adults (Drowning in Tarrant County). Two community organizations, The Fort Worth Drowning Prevention and Water Safety Coalition (FWDPC) and the YMCA Fort Worth (YMCA FW), conduct dedicated summer programs to teach children and adults in-water and classroom-based water safety strategies. This grant project supports its community partners by advertising for/providing volunteers, which enables the accommodation of more participants per clinic. In addition, this grant project provided occupational health supplies (sunscreen and sunglasses) to their community partner to mitigate the prolonged sun exposure commonly faced by their volunteers. Through this project, TCU students have engaged with these organizations, supported their objectives, and directly improved drowning statistics within the Fort Worth community.

View Presentation


"TCU Jeopardy Night": Changing the Narrative of Contributions by Underrepresented Groups in STEM

Type: Undergraduate
Author(s): Zach Rouseau Biology Grace Bobo Chemistry & Biochemistry Jack Bonnell Chemistry & Biochemistry Precious Castillo Chemistry & Biochemistry Audrey Dolt Biology Tatum Harvey Biology Lola Kouretas Chemistry & Biochemistry Christina Mantsorov Chemistry & Biochemistry Chie Nguyen Biology Kiet Nguyen Biology
Advisor(s): Kayla Green Chemistry & Biochemistry Heidi Conrad Chemistry & Biochemistry Julie Fry Chemistry & Biochemistry
Location: Basement, Table 5, Position 1, 11:30-1:30

Throughout history, it has been perceived that significant advancements in STEM have been a result of primarily white males’ accomplishments. To help correct this misconception on our campus, TCU Chemistry Club has initiated “TCU Jeopardy Game Night”. This is an initiative where students, staff, and organizations in STEM throughout the year get exposed to and educated on the accomplishments in the history of diverse groups underrepresented in STEM with an emphasis in chemistry through an engaging and interactive mechanism. This spring term, our organization will host a Jeopardy-style game night with trivia questions over the material presented and prizes purchased with the ACS DEIR Grant. This material serves as an incentive toward the ultimate goal of educating our campus population regarding diversity, equity, inclusion, and respect for scientists who have not been acknowledged for their exceptional work.

View Presentation


Bags of Joy

Type: Undergraduate
Author(s): Maggie Tucker Interdisciplinary Molly Koca Interdisciplinary Jacqueline Leon Interdisciplinary
Advisor(s): Mathew Crawford Interdisciplinary
Location: Basement, Table 4, Position 2, 1:45-3:45

Project Overview:
2020 we partner with Once Upon a Room. We partnered with Cook Children's Hospital to decorate rooms for children who will have an extended stay. Due to COVID-19, we could not continue with Once Upon a Room. In the 2021-2022 we created Bags of Joy and continued to partner with Cook Childrens Hospital. We provided holiday-themed goodie bags as well as welcome hygiene bags.

Background of the Community:
The community in which we are working with those under the age of 18 with poor health.
Our community partner is Anne Stankus and Megan Hodges, Child life specialist at Cook Children

Need Statement:
Our community partners have communicated to us that there is a need for hygiene and essential items for the caregivers of a patient to receive when they are admitted to the hospital, so that they have to opportunity to stay with their child durning this time of need.
Another need that has been expressed to us has been for the hosting of events, like game nights.

Project description:
We had hoped to continue to give hygiene bags and make a switch from goodie bags to hosting a game night.
This year we were to supply 36 welcome bags for Cook, host a game night, and donate 400 easter eggs for their annual easter egg hunt.

As this was our first year hosting a game night at Cook children, we struggled in the begging to find games and activities that would fit into the guidelines but in the end, we were able to make it a successful event and now we have ideas on ways to improve for next year.
We continue to have good feedback from our Cook Children's coordinator.
As two of our members are graduating we will still have one member who is an active student at TCU. Molly, our non-graduating member, will take over our EPIC grant.

View Presentation


Numerical study of Neimark-Sacker bifurcations in a discrete two-dimensional logistic predator-prey dynamical system

Type: Undergraduate
Author(s): Brandon Isensee Mathematics
Advisor(s): Igor Prokhorenkov Mathematics
Location: Second Floor, Table 5, Position 3, 1:45-3:45

We show that a discrete two-dimensional logistic predator-prey dynamical system with two parameters undergoes a Neimark-Sacker bifurcation under certain conditions. Our evidence includes numerical computations of orbits and bifurcation diagrams.

View Presentation


Probabilities on Latin Squares

Type: Undergraduate
Author(s): Anna Long Mathematics
Advisor(s): Drew Tomlin Mathematics
Location: First Floor, Table 5, Position 2, 1:45-3:45

A Latin square is a nxn square that contains n different symbols, often numbers, and are arranged such that each symbol appears exactly once in each row and column. In this project, we look at the probability of a random arrangement of symbols being a Latin square. I start with n number of n symbols, for example a 3x3 square will contain the numbers 1,1,1,2,2,2,3,3,3 in a random assortment. Using counting methods and statistical estimation through Python, we discover the proportion of total squares that are Latin squares.

View Presentation


Geodesic Nets construction using Genetic Algorithm

Type: Undergraduate
Author(s): Duc Toan Nguyen Mathematics
Advisor(s): Ken Richardson Mathematics
Location: Basement, Table 6, Position 3, 1:45-3:45

Geodesics are significant objects and a major topic in differential geometry. They are "straight" curves on surfaces that can locally represent the shortest path between two points. In this research, we employ the genetic algorithm, an optimization method in classical Artificial Intelligence, to construct a geodesic net on closed surfaces. A geodesic net is a network that connects multiple points with the shortest curves while ensuring that each point is ``balanced'' and stretched equally by its neighbors through those curves.

View Presentation


Prevalence and Associated Factors of Food Insecurity Among College Students

Type: Graduate
Author(s): Maddie Jacobs Nutritional Sciences Kelly Fisher Nutritional Sciences Gina Hill Nutritional Sciences Kristi Jarman Mathematics
Advisor(s): Gina Hill Nutritional Sciences Kelly Fisher Nutritional Sciences
Location: Basement, Table 5, Position 3, 11:30-1:30


Maddie Jacobs; Gina Hill, PhD, RD, LD; Kelly Fisher, DCN, RD, LD; Kristi Jarman, PhD

Background - The USDA defines food insecurity (FI) as when individuals lack the resources to obtain food in socially acceptable ways. According to the USDA, 10.2% of the U.S. population was food insecure in 2021. According to current literature, university campuses have an average of 36% FI. There are limited studies regarding FI at private universities, likely because FI is assumed to be low.

Objective – This study aimed to identify the rate and distribution of FI at a private university in North Texas and to analyze the demographic, socio-economic, and other factors associated with FI among college students.

Design – In this cross-sectional study, participants completed a one-time online survey.

Methods – The survey included sociodemographic questions and the validated USDA Adult Food Security Survey Module to measure FI status among current university students >18 years of age. Ordinal logistic regression, based on the Proportional Odds model, was conducted to determine the association between FI and sociodemographic variables.

Results – The majority of participants were white (82%, n=288), non-Hispanic (83%, n=293), and women (77%, n=271) with a mean age of 22.5±6.6. Of the 353 participants in the study, 22.4% (n=79) were classified as food insecure and 9.6% (n=34) were classified as having very low food security with evidence of reduced intake and disrupted eating patterns. Participants who were underclassmen (p=0.029), receiving more financial aid (p=0.016), international (p=0.081), Hispanic/Latinx (p=0.478), and older (p=0.283) were more likely to have greater FI. Among the food insecure participants, 30.4% (n=24) were aware of resources to obtain food on or near campus.

Conclusions - More research is needed regarding FI at private universities. However, this study provides sufficient data to take action to address FI by means of advocacy, dissemination of resource information, and the addition of new resources, such as an on-campus food pantry.

View Presentation


Food Sensitivity Testing in Children: A Case Study and Narrative Review

Type: Undergraduate
Author(s): Kelly Jaimes Nutritional Sciences
Advisor(s): Kelly Fisher Nutritional Sciences Heidi Conrad Chemistry & Biochemistry Rebecca Dority Nutritional Sciences
Location: Third Floor, Table 1, Position 3, 11:30-1:30

Despite the significant prevalence of food intolerances in children and adolescents (2 to 18-year olds), food intolerance mechanisms and testing is severely misunderstood and under researched. A food intolerance is a non-immunological response that occurs after consuming a specific food particle causing gastrointestinal (GI) issues such as bloating, nausea, diarrhea, and abdominal pain. The lack of understanding of food intolerances is causing too many children to unnecessarily follow unsupervised elimination diets which increases the risk of developing nutrient deficiencies. The objectives of this study were to demonstrate the serious impact to the quality of life (QOL) that food intolerances have towards children and adolescents by analyzing available literature and utilizing a case study participant. Findings suggested that there must be more research done to understand food intolerance to improve the QOL in children and adolescents.

View Presentation


The Effect of Registered Dietitians on Quality of Life, Eating, and Nutrition Knowledge of Adults with Eating Disorders

Type: Graduate
Author(s): Sarah Jennings Nutritional Sciences Kelly Fisher, DCN, RD, LD Nutritional Sciences Gina Jarman Hill, PhD, RD, LD Nutritional Sciences Kristi Jarman, PhD Mathematics
Advisor(s): Gina Hill Nutritional Sciences Meredith Curtis, PhD Biology Kelly Fisher Nutritional Sciences Kristi Jarman, PhD Mathematics
Location: Basement, Table 7, Position 2, 11:30-1:30

Background: Eating disorders (EDs) can lead to decreased quality of life (QOL), medical complications, and death, with the second highest mortality rate of all mental illnesses. ED treatment can include psychologists, registered dietitians (RD), and/or physicians. Insufficient research exists regarding RDs’ effects on ED treatment.
Objective: Describe the impact of RDs on ED treatment and QOL.
Design: A cross-sectional sample of participants with a history of ED completed a one-time, online survey.
Methods: Healthcare providers were emailed with recruitment materials for clients >18 years. Survey included demographic, validated Eating Disorder Quality of Life scale (EDQOL), and RD effects and helpfulness questions. In SPSS, paired t-test was used to assess QOL post-treatment for RD vs non-RD groups, plus effect size. Independent-samples t-tests were used to compare post-treatment QOL scores and mean differences in pre- and post-treatment QOL scores for RD vs non-RD groups. Using conventional qualitative analysis, narrative responses to the question “How has working with a registered dietitian (RD) affected your eating disorder recovery?” were coded by two researchers separately, then consensus was reached for final themes.
Results: Participants (n=70) were 87.1% (n=61) white, 90% (n=63) female, and RD treatment group (n=60). Most participants had positive perceptions of RD impact on ED recovery and described RDs as helpful, supportive educators. Over 62% of participants (n=35) reported that the RD helped reduce disordered eating behaviors a great deal/a lot. Statistically significant improvement in QOL after treatment existed for both RD treatment (-22.68, n=56, p < 0.001) and non-RD treatment groups (-14.9, n=10, p=0.008), without a significant difference between groups (p=0.193).
Conclusions: Results suggest RDs contribute to certain aspects of recovery. Participants reported that RDs helped decrease ED behaviors, shame, and meal skipping. Future research needs include the effects of RDs on ED treatment in larger, diverse samples.

View Presentation


Syncytia Formation Rate for SARS-CoV-2 Variants

Type: Undergraduate
Author(s): Ava Amidei Chemistry & Biochemistry Hana Dobrovolny Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Third Floor, Table 10, Position 2, 1:45-3:45

COVID-19, also known as SARS-Cov-2, has caused a worldwide crisis. SARS-CoV-2 is able to form syncytia cells, which are large multi-nucleated cells. Syncytia formation allows the virus to propagate without leaving the host cell. Currently, not much is known about syncytia cells, including the rate at which they form. Data from a study by Rajah et al. (2021) was used to estimate the rate of synctia formation for each variant of SARS-CoV-2. This includes the Alpha, Beta, D61G, and Wuhan Variants. The rates of syncytia formation were found by using mathematical modeling. This information can better our understanding of syncytia formation.

View Presentation


Surface Cleanliness of Hydrothermally Grown Zinc Oxide Microparticles for Antibacterial Usage

Type: Undergraduate
Author(s): Vivek Athipatla Physics & Astronomy Dustin Johnson Physics & Astronomy Yuri Strzhemechny Physics & Astronomy
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Third Floor, Table 1, Position 1, 11:30-1:30

Zinc Oxide (ZnO) nanoparticles are attractive candidates for application as antibacterial agents due to high biocompatibility with effectiveness against antibiotic-resistant strains of both Gram-positive and Gram-negative bacteria. Despite this potential, applications are limited by fundamental gaps in understanding of the underlying antibacterial pathways. ZnO nanoparticles are currently more widely used in antibacterial research compared to ZnO microparticles due to the potential for internalization into bacterial cells. Microparticles are nevertheless of interest as a research platform as the increased scale allows both the nonpolar and polar facets of the ZnO crystals to be distinguished. This in turn provides a useful platform to experiment on and study surface interactions with bacteria. In addition, because of their larger size, ZnO microparticles would not internalize inside typical bacteria, allowing for more targeted investigation of other, potentially more potent, antibacterial mechanisms.

Preliminary studies indicate that hydrothermally grown ZnO microparticles exhibit comparable antibacterial activity to commercial ZnO nanoparticles further adding to their utility. The goal of this research is to validate the nature of these behaviors by investigating differences in surface cleanliness between “home-grown” microparticles which were synthesized in the lab through a bottom-up hydrothermal growth method and commercial nanoparticles. Such differences may influence cytotoxicity, skewing the results of antibacterial studies. To do so, both Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy were used to probe the quality and cleanliness of the ZnO crystalline free surface of the microparticles and nanoparticles.

In this work we detected similarities in the vibrational modes at the surface stemming from ZnO growth precursors. These are seen to be similar across all samples investigated, however, a weak O-H bending is found in the home-grown microparticles. We demonstrate that these results justifies our low-cost hydrothermally lab-grown specimen as a suitable platform for future surface-specific antibacterial studies.

View Presentation


Effectiveness of antibodies in syncytia-forming viruses

Type: Undergraduate
Author(s): Isabelle Beach Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Third Floor, Table 8, Position 1, 11:30-1:30

Syncytia formation is the fusion of cells by a virus to create a multinucleated cell (syncytium) that shields the virus from outer factors in the extracellular space, such as antibodies. However, this process is much more energy intensive for a virus than tunneling between cells, which also shelters the virus. Why would a virus fuse cells together rather than save energy and tunnel? In order to determine what the benefits of syncytia formation are for viruses, a mathematical model including syncytia formation and antibodies was developed to simulate viral dynamics. Characteristics like viral duration, viral titer peak, and time of peak were measured while changing parameters such as fusion rate, which allowed comparison of infections with and without syncytia formation. Mathematically modeling and analyzing these comparisons and changes helps us understand whether syncytia formation helps protect viruses from the effect of antibodies.

View Presentation


Erbium-Doped Graphene Quantum Dots and Their Potential For Bioimaging

Type: Undergraduate
Author(s): John Brannon Physics & Astronomy Ben Spitters Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Second Floor, Table 3, Position 3, 11:30-1:30

To track drug delivery within the body, the vehicle must be biocompatible, soluble, and transparent in the human body. Being transparent in the human body means the vehicle exhibits fluorescence in the near-infrared (NIR) III biological transparency window (1500 – 1800 nm). These traits will respectively not oppose health defects in the subjects, will be stable within the blood and cells of the body, and be able to be found within the body through the means of infrared detectors. This is where graphene quantum dots (GQDs) come into the picture. GQDs prepared by a one-step hydrothermal method from glucosamine and ascorbic acid precursors are biocompatible and soluble in water. On their own, they do not demonstrate fluorescence in the NIR-III. To add this capability, we dope GQDs with erbium ions (Er-GQDs) as they demonstrate a fluorescence peak at 1550nm followed by excitation at 980nm laser. Fluorescence light coming from erbium ions at 1550 nm covers the NIR-III biological window, which is the last specification needed to have an eligible vehicle. In our work, we synthesized Er-GQDs at 200℃ for 8 h and 17 h in deuterium oxide. The fluorescence of erbium ions is known to be quenched by OH functional groups. The average size of Er-GQDs is growing from 3 to 5 nm after 8 h and 17 h treatment times, respectively, and exhibit fluorescence with 1550 nm emission peak in deuterium oxide. All aforementioned results make Er-GQDs a potential imaging agent for bioimaging.

View Presentation