Filter and Sort







NTDT2019ENDICOTT10161 NTDT

A Model for Implementing a Food Recovery Program at the University Level

Type: Undergraduate
Author(s): Lexi Endicott Nutritional Sciences
Advisor(s): Jada Stevenson Nutritional Sciences Lyn Dart Nutritional Sciences Gina Hill Nutritional Sciences
Location: Session: 1; 2nd Floor; Table Number: 4

poster location

Background: Over 42 million Americans face food insecurity (FI). Simultaneously, approximately 40% of food produced in the U.S. is wasted. Where FI and food waste (FW) coexist, it is necessary to develop and implement programs to decrease the negative consequences caused by these issues.
Objective: The objective of this study was to create a standardized model for implementing a student-led food recovery program (FRP) for other universities to access and utilize. The secondary objective was to measure the effectiveness of the FRP at TCU.
Researchers hypothesized that by incorporating the FRP into the dietetics program, the FRP would achieve program sustainability and enhance dietetic students’ knowledge of FI and FW.
Design: This study utilized a mixed methods study design.
Methods: Over three academic semesters, researchers observed the overall operations of the FRP at TCU. Researchers collected quantitative data on food types (i.e. vegetables, grains, proteins, mixed), quantities (pounds), and raw food costs ($). Researchers conducted semi-structured interviews with nutrition and dietetics students, foodservice personnel, and faculty and analyzed interview transcriptions for prevalent theme codes. A codebook was created based on frequently identified phrases, and themes were extracted. Participants provided written consent. This project received IRB approval.
Results: Over 12,700 pounds of food were recovered during the study period. By weight, protein-containing foods were the most recovered type of food (~5700 lbs.), followed by grains (~2900 lbs.), vegetables (~2100 lbs.), and mixed foods (~2000 lbs.). Five major themes were extracted from interviews; all respondents identified the FRP as a meaningful and practical program.
Conclusions: FRP offers a sustainable solution for benefitting the environment, combating FI, and providing dietetics students with experience working with FI and FW. Efforts should be made to incorporate a FRP at the university level, and a dietetics program may offer an effective means to achieve this integration.

View Poster

NTDT2019FREDERICKSON39661 NTDT

EAT2WIN: A PILOT STUDY ASSESSING ATHLETES BEHAVIORS, ATTITUDES, AND ADHERENCE USING A MOBILE APPLICATION

Type: Undergraduate
Author(s): Jade Frederickson Nutritional Sciences Ginny Ho Nutritional Sciences
Advisor(s): Lyn Dart Nutritional Sciences Brooke Helms Interdisciplinary Jada Stevenson Nutritional Sciences Anne VanBeber Nutritional Sciences
Location: Session: 2; Basement; Table Number: 1

poster location

Background: Athletes increasingly skip meals because they lack time or knowledge to prepare their own meals; mobile applications have been proposed as a potential solution to this problem. Adherence to mobile app tracking may vary, but self-motivation and nutrition knowledge has been shown to increase chances of behavior change while using an app.
Objective: Determine if female college athletes’ nutrition/fueling behaviors changed over four weeks by utilizing a mobile application for tracking fueling practices.
Design: Pilot study with cohort of 17 female TCU NCAA Beach Volleyball athletes.
Methods: Pre and post-study questionnaires examined attitudes toward mobile applications, dietary behaviors, and frequency of fueling habits. Athletes also attended a pre-study training session about utilizing the Eat2Win app. Data analyses included recorded frequency of application usage and logged meals per/day plus impact on dietary behaviors/fueling habits. Study procedures were approved by TCU IRB. Participant informed consent was obtained. Data were analyzed to meet study objectives (SPSS, p<0.05).
Results: Most athletes (82%) disliked using the Eat2Win app, where app usage decreased from 88% in week one to 18% app usage at the completion of the study. Reasons for the pronounced decrease in usage included frequent app crashes, too time consuming, and limited phone storage space. Additionally, results did not show improvement in athletes’ eating habits with app usage. Although pre-study results showed 42% of athletes did not consistently eat breakfast and/or eat/drink something every 3-4 hours, those athletes who reported greater frequency of eating breakfast and/or every 3-4 hours or refueling one hour after practice, maintained consistent positive eating behaviors throughout the study. These same athletes also reported greater energy levels overall (r=.671; p=0.01).
Conclusions: Study results emphasize the importance of implementing user-friendly mobile apps for athletes that are time-use efficient and offers calorie-counting and picture logging functions to promote change in dietary and refueling practices.

View Poster

NTDT2019KIEFER3939 NTDT

DESCRIBING BEVERAGE INTAKE CHOICES AND FACTORS RELATED TO BEVERAGE INTAKE AMONG COLLEGE STUDENTS

Type: Undergraduate
Author(s): Ali Kiefer Nutritional Sciences Macy Essman Nutritional Sciences Chris Villalpando Nutritional Sciences
Advisor(s): Gina Hill Nutritional Sciences
Location: Session: 1; 2nd Floor; Table Number: 2

poster location

Background: More than 66% of American adults are overweight or obese. Sugar sweetened beverages (SSB) are a primary source of added calories and may promote weight gain.
Methods: This study was approved by the Institutional Review Board. A random sample of college students provided informed consent before completing an electronic survey that included questions to determine participants’ demographics, self-reported height, weight, physical activity level, total beverage intake, health perceptions, and factors affecting beverage choices. Beverage kcals and intake were determined using the validated BEVQ15 Beverage Questionnaire.
Results: Participants (N=103) were 19.6+/-1.9 years of age with a healthy mean BMI of 23.3+/-3.7. Almost 70% (n=48) had a healthy BMI, ~25% (n=17) were overweight, 6% (n=4) were obese, ~81% (n=83) reported that they were lightly to very active, and 5% (n=5) reported that they were sedentary. Average beverage kcals/day (BKD) was 180.8+/-156.2 and ranged from 0-795 BKD. Among participants (n=75) that completed the BevQ15, 33% (n=26) consumed <100 BKD, 47% (n=35) consumed 100-<300 BKD, and 19% (n=14) consumed > 300 BKD. Normal BMI participants consumed 191 BKD, overweight participants consumed 204 BKD and obese participants consumed 69 beverage BKD. There was no significant correlation between BMI and BKD. Three primary factors which contributed to beverage choices were taste, quenching thirst, and health reported by 54% (n=55), 46% (n=47) and 44% (n=45), respectively. The factors health and calorie content were correlated (r=.23, p<0.05).
Conclusion: Participants had an average healthy BMI and were active. No significant correlations were detected between BMI and BKD. Obese participants consumed fewer BKD than healthy and overweight participants. This lower BKD contribution may be a method used to lose weight. Although calorie content was less frequently cited as a primary factor of beverage choices, participants that identified health as a determining factor were more likely to consider calorie content.

View Poster

NTDT2019MCKNIGHT53355 NTDT

THE RELATIONSHIP BETWEEN COFFEE CONSUMPTION ONSET AND PERSONAL WELLBEING IN UNDERGRADUATE COLLEGE STUDENTS

Type: Undergraduate
Author(s): Noel McKnight Nutritional Sciences Caroline Green Nutritional Sciences
Advisor(s): Rebecca Dority Nutritional Sciences
Location: Session: 2; Basement; Table Number: 4

poster location

Background: Americans’ choice in caffeinated beverages, consumption amounts, and frequency of consumption varies depending on factors like age, demographics, education level, and social status. Caffeine has shown to increase energy, alertness, attentiveness, and sociability. Research shows that the amount of caffeine consumed by adolescents has increased 70% in the past 30 years.
Objective: The objective of this study was to determine the relationship between the onset of coffee consumption, amount of current coffee consumption, and personal well-being. It was hypothesized that an earlier onset of coffee consumption would have a positive correlation to increased coffee consumption and a negative effect on personal well-being later in life.
Methods/Design: An online survey was administered to college students, age 18-24. Participants were recruited via social media. The survey assessed participants’ history of coffee consumption, current coffee consumption, and perception of impact on appetite, mental status, mood, sleep patterns, and overall health. Data was entered into SPSS after survey responses were collected.
Results: Upon surveying participants (N=95), there were strong positive correlations (p<0.01) between the onset of coffee consumption, amount consumed at onset, and current consumption level. Notably, onset of coffee consumption was likely to occur during significant academic years, such as the first year of college (15.8%, n=15) and first year of high school (13.7%, n=13). Approximately 67% (n=64) reported consuming 1-2 cups/day at onset of consumption. Additionally, 52.6% (n=50) report that coffee consumption benefits their overall mood, while 41.1% (n=39) claim it has no effect on overall health and well-being.
Conclusions: The onset of coffee consumption is commonly seen in times of change, such as significant academic years. Consequently, participants also agreed that caffeine consumption benefits their mood above other qualities surveyed. Further research relating to other types of caffeinated beverages and foods would provide more conclusive results about onset and wellbeing.

View Poster

NTDT2019PEDDIE7490 NTDT

THE PERCEPTION OF TYPE 1 AND TYPE 2 DIABETES MELLITUS AMONG COLLEGE STUDENTS AGE 18-24

Type: Undergraduate
Author(s): Kendall Peddie Nutritional Sciences Claire Koskie Nutritional Sciences
Advisor(s): Rebecca Dority Nutritional Sciences
Location: Session: 2; Basement; Table Number: 3

poster location

Background: Diabetes Mellitus is a chronic condition that affects the body’s ability to use energy in food. Diabetes impacts more than 170 million people worldwide. Previous research suggests that people with diabetes report feeling stigmatized and that there is a lack of understanding by the public.
Objective: The objective of this study was to determine the level of diabetes knowledge among college students and their perception of people with diabetes. It was hypothesized that there is a lack of diabetes education among this group and that they would have an overall negative perception of people with diabetes.
Methods: An online survey was developed which assessed participants’ knowledge of Type 1 and Type 2 Diabetes and stigmas associated with the condition. Participants were recruited via email and social media. Data was analyzed using SPSS.
Results: Upon surveying participants (N=126), the majority reported knowing someone with Type 1 (63%; n=78) and/or Type 2 Diabetes (53%; n=67). Knowledge of someone with diabetes was strongly correlated with overall diabetes knowledge (p≤0.01). Approximately 63% (n=78) of respondents believe there is a stigma associated with diabetes. Reasons for the stigma include lack of diabetes education (63%; n=78) and negative portrayal of diabetes in the media (52%; n=65). There was a strong correlation (p≤0.01) between diabetes knowledge and whether or not respondents had a negative perception of people with diabetes.
Conclusions: Though the respondents reported that a stigma exists, a low percentage of respondents reported having negative perceptions of people with diabetes. This finding may be attributed to the large number of participants who knew people with diabetes, number of participants in health related majors, or those who had taken a college-level nutrition course. Future research could mitigate these variables by excluding participants in health-related majors or those who have had extensive education on the subject.

View Poster

NTDT2019SHELTON635 NTDT

The Effects of Parents' Perceptions of Food on Children's Eating Habits Later in Life

Type: Undergraduate
Author(s): Dalia Shelton Nutritional Sciences Charlie Tapken Nutritional Sciences
Advisor(s): Rebecca Dority Nutritional Sciences
Location: Session: 2; Basement; Table Number: 2

poster location

Background: Much of the research associated with eating patterns of adolescents or young adults has been related to genetics, weight gain associated with parental influence of food selection, and children’s food choices relative to their parent’s desires. There is little research conducted on children’s perceptions of their parent’s food choices and how those beliefs correlate to their own dietary choices later in life.
Objective: The objective of this study was to determine whether parents’ perceptions of food had an effect on their children’s eating behaviors later in life. The hypothesis was that the food-related behaviors and beliefs of the parents strongly influence the child’s future dietary choices and lifelong relationship with food.
Methods: An online survey was developed that consisted of questions regarding student’s perceptions of their parents’ dietary choices and their own current dietary choices and beliefs. Researchers recruited participants via email and social media. Data was analyzed using SPSS.
Results: Among survey participants (N=158) there was a significant correlation (p<0.01) between the parent’s past eating behaviors and child’s current eating behaviors for several dietary patterns, including vegan, low carbohydrate, calorie counting and gluten free. Approximately 42% (n=66) of respondents reported that they were made aware of their weight at a young age. There was a strong correlation (p<0.01) between parents discussing weight and discouraging attempts to try new foods.
Conclusions: There was a significant correlation between the way that children view diet and nutrition and how their parents view diet and nutrition, as perceived by the children. Parents’ specific eating behaviors and discussions about weight also correlate with their children’s current eating behaviors and awareness of weight, although they may not currently live together. For more conclusive results, future research on the subject should also include data regarding parents’ perspective of their own food choices and beliefs.

View Poster

PHYS2019BUESCHEL12591 PHYS

Modeling of parvovirus treatment of cancer

Type: Undergraduate
Author(s): Devina Bueschel Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 2nd Floor; Table Number: 4

poster location

Rat Parvovirus is found in rat liver and can infect and cause changes in tumor cells. When tumor cells are infected, the cells can revert back to benign or uncancerous cells. We describe and analyze a mathematical model of infected and noninfected tumor cells when introduced to the parvovirus. Using nonlinear analysis, we find the conditions for cure of the tumor.

View Poster

PHYS2019CAMPBELL56087 PHYS

Graphene Quantum Dots as Imaging, Sensing, and Delivery Agents

Type: Graduate
Author(s): Elizabeth Campbell Physics & Astronomy Giridhar Akkaraju Biology Roberto Gonzalez-Rodriguez Chemistry & Biochemistry Md. Tanvir Hasan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 2; Basement; Table Number: 10

poster location

Graphene quantum dots (GQDs) are novel materials with a number of unique properties that can be applied in electronics, sensing and biotechnology. GQDs possess physical properties that are critical for biomedical applications, including small size (3-5 nm), high quantum yield, and pH-dependent fluorescence emission in the visible/near-infrared, providing a possibility of molecular imaging, and pH-sensing. They also show very low cytotoxicity suggesting high potential for multiple biomedical applications. GQDs can also be doped to form nitrogen doped graphene quantum dots (N-GQDs), sulfur doped graphene quantum dots (NS-GQDs) and boron nitrogen doped graphene quantum dots (BN-GQDs), which allow these optical properties to be adjusted. We utilize and modify these properties to yield a multifunctional delivery/imaging/sensing platform geared toward the analysis of cancer therapeutics delivery in vitro. In our work, we outline how GQDs can serve as potential drug transport agents and as molecular markers for imaging the delivery pathways. Optimal emission and excitation are selected for each quantum dot to minimize the autofluorescence of cells, allowing them to be imaged in vitro. Emission in healthy (HEK-293) and cancer (HeLa and MCF-7) cells is quantified for a variety of pH environments to identify the ideal conditions for cellular internalization and pH-sensing of acidic cancerous environments. In addition, in vitro fluorescence microscopy analysis provides quantitative assessment for accumulation in cells. The results of this work suggest GQDs as innovative and effective highly biocompatible multifunctional platforms for cancer therapeutics.

View Poster

PHYS2019CERESA50306 PHYS

How to deal with inner filter effect in fluorescence experiments

Type: Graduate
Author(s): Luca Ceresa Physics & Astronomy Jose Chavez Physics & Astronomy Ignacy Gryczynski Physics & Astronomy Joe Kimball Physics & Astronomy
Advisor(s): Zygmunt Gryczynski Physics & Astronomy
Location: Session: 1; 2nd Floor; Table Number: 2

poster location

Fluorescence is a very useful and popular technique which has been used in a wide variety of fields and, of late most importantly, at the intersection of biophysics, biochemistry and medicine. Despite being relatively simple from a theoretical point of view, it turns out that practical applications can have trivial problems that can cause significant spectroscopic problems. Specifically, an often overlooked yet fundamental obstacle in fluorescence spectroscopy is the nonlinearity of fluorescence intensity versus fluorophore absorption. This is referred to as the inner-filter effect. In literature, it is divided into a “primary inner-filter effect” and a “secondary inner-filter effect”. The former is caused by the absorption of the excitation light, which results in the lowering of the intensity of light reaching deeper regions of the solution. The latter is represented by the reabsorption of the emitted fluorescence by the fluorophores in the solution. Due to the fact that the primary inner filter effect is a direct consequence of the high concentration of the solution, to observe the secondary inner filter effect it is necessary to have a chromophore which absorbs part of the light that is emitted by the main fluorophore. Although working with low concentrations is generally recognized as a good practice to avoid artifacts related to inner filter effects, the primary inner filter effect can occur even at low absorbances (< 0.05). Furthermore, it is possible that using solutions with high absorbance is strictly necessary in studying the photophysical properties of fluorescent dyes and the interactions of biological macromolecules. Therefore, a reliable correction method for inner filter effects is fundamental for spectroscopic studies. Since it has been reported that the existing methods for correcting the fluorescence intensity are hard to implement in practice, we propose a strategy based on the previous calculation of the so called “sensitivity factor” of a spectrofluorometer. By mounting a cuvette on a movable holder in a square geometry setup, we can modify the position of the cuvette during a regular emission/excitation experiment. This allows us to determine the sensitivity factor. This result can be effectively used to correct the emission/excitation spectra to restore the linearity between absorbance and fluorescence intensity in samples characterized by high concentrations.

View Poster

PHYS2019CHAVEZ34578 PHYS

Phosphorescence – Potential Biological Applications of Direct Excitation to the Triplet State.

Type: Graduate
Author(s): Jose Chavez Physics & Astronomy Luca Ceresa Physics & Astronomy Ignacy Gryczynski Physics & Astronomy Joe Kimball Physics & Astronomy
Advisor(s): Zygmunt Gryczynski Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 2

poster location

Fluorescence has grown to be the most sensitive detection technique used in a variety of biophysical, biochemical and medical applications for several decades. However, there is an interesting luminescence similar to fluorescence which causes an “afterglow effect” (“glow in the dark”). This is called “phosphorescence”. Phosphorescence has an exceptionally longer lifetime (milli or microseconds) compared to fluorescence (nanoseconds). This can be up to a million times longer. Modern fluorescence lifetime measurements require sensitive detectors that cost several ten to hundreds of thousands of dollars, while a phosphorescence lifetime detector can be in the thousands range. This detector uses ocean optics spectrometry with a phosphoroscope to measure phosphorescence. With this application we want to use it for studying protein dynamics such as shape, spacing, binding, etc. The novelty for this approach is using tryptophan as a probe for direct excitation to the phosphorescence triplet state. This means the usual encounter of fluorescence there is a continuous light source. When exposed the sample will emit its fluorescence. Once removed from the light source, since fluorescence is so fast when decaying, will expire off. However, with phosphorescence, after the removal of the light source, the sample still emits. This procedure if successful will circumvent fluorescence and just achieve phosphorescence. To study this we will be using PVA (poly vinyl alcohol [plastic]) with 5,6 – Benzoquinoline, Indole, and Tryptophan where the first compound is confirmed to have phosphorescence able to be seen even with the naked eye at room temperature. These will be studied in a device that will measure phosphorescence called a fluorospectrometer (Varian Eclipse) and the phosphoroscope. With this information we can find out what color (wavelength) to excite the tryptophan and circumvent fluorescence to phosphorescence.

View Poster

PHYS2019CIAMPA28285 PHYS

Massive Winds Triggered by Supernovae in the Large Magellanic Cloud Galaxy

Type: Graduate
Author(s): Drew Ciampa Physics & Astronomy
Advisor(s): Kat Barger Physics & Astronomy
Location: Session: 1; Basement; Table Number: 6

poster location

Massive amounts of gaseous material are being ejected from the nearby Large Magellanic Cloud (LMC) due to supernovae explosions occurring inside the galaxy. These explosions influence how gas cycles in and out of a galaxy and is crucial for our understanding of how galaxies evolve. Being the nearest gas-rich galaxy, the LMC provides us with an excellent opportunity to explore this gas cycle in detail. We have combined spectroscopically resolved observations to investigate the influence supernovae have on the LMC gas and the connection between supernovae explosions and the currently flowing galactic wind.

View Poster

PHYS2019DONOR55459 PHYS

Old Problems Require Modern Solutions: a Data-Driven Approach to Modeling Stellar Populations

Type: Graduate
Author(s): John Donor Physics & Astronomy John Wise Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Session: 2; Basement; Table Number: 7

poster location

The problem of fitting isochrones, theoretical models of stellar populations, to the observed stellar populations (e.g. star clusters) has plagued observational astronomy for decades. A plethora of algorithms have been developed, but many fall short of their goals, and almost all are very computationally expensive. We present a new, computationally efficient technique made possible by first creating a fiducial representation of the data. This concise representation allows for a robust comparison to many theoretical models using a Markov-Chain Monte Carlo (MCMC) approach, quickly producing not only accurate fits but reasonable constraints on the final fitting parameters. The technique is applied to a number of star clusters, and the results are discussed in the context of Galactic chemical evolution.

View Poster

PHYS2019FAIN18003 PHYS

Investigating viral transmission using an agent based model

Type: Graduate
Author(s): Baylor Fain Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 7

poster location

A virus spreads through a body in two known ways: free cell transmission and cell to cell transmission. During free cell transmission, cells make viruses that diffuse throughout the body which may cause any cell that the virus touches to become infected. During cell to cell transmission, a virus spreads to a neighboring cell through an intercellular transfer. While previous research has investigated viruses based on free cell transmission, few models have incorporated cell to cell transmission leading to unclear results and bias to certain variables. This research accounts for both free cell and cell to cell transmission, using an agent-based framework. The model represents virus infection and spread in a two-dimensional layer of cells in order to generate total virus over time graphs for corresponding initial dose of virus.

View Poster

PHYS2019HASAN44461 PHYS

Optical Properties Alteration and Photo-Voltaic Applications of Nitrogen-Doped Graphene Quantum Dots

Type: Graduate
Author(s): Md Tanvir Hasan Physics & Astronomy Roberto Gonzalez-Rodriguez Physics & Astronomy Conor Ryan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 2

poster location

In this work, a simple/scalable microwave-facilitated hydrothermal route is used to produce nitrogen self-doped graphene quantum dots (NGQDs) from a sole glucosamine precursor. These NGQDs with average sizes of ~6nm show bright/stable fluorescence both in the visible and near-IR. The structural and optical properties of as-prepared NGQDs are further altered to provide control for optoelectronic applications by using ozone and thermal treatment. Thermal processing serves as controllable avenues to decrease GQD emission via anticipated reduction processes. Oxidative ozone treatment results in the decrease of GQD average size down to 5.23 nm and a more disordered structure due to the introduction of the new functional groups. Structural and optical characterization was performed utilizing TEM, AFM, SEM microscopy and FTIR, EDX, Raman, fluorescence, absorbance spectroscopy. FTIR, EDX and Raman data suggest that this processing introduces oxygen-containing functional groups, enhancing the atomic percentage of oxygen and increasing ID/IG ratio. Ozone treatment shows enhancement of visible emission which is observed from 0 to 16 min ozone processing with following over oxidation-induced defect-related quenching. On the other hand, a progressive increase in defect-related NIR emission is observed up to 45 min. Such alteration of optoelectronic properties enhances NGQD performance in photovoltaic devices.

Untreated NGQDs (Un-NGQDs) and ozone-treated NGQDs (Oz-NGQDs) are utilized as a photoactive layer to fabricate a variety of solar cells. Although devices with untreated NGQDs show performances similar to existing reports, Oz-NGQDs exhibit significant improvement (~six fold) with maximum PCE of 2.64%, an open circuit voltage of ~0.83V, a short circuit current density of 4.8 mA/cm^2, and an excellent fill factor of ~86.4%. This enhancement can be potentially attributed to the increased/broadened visible absorption feature in device state due to the efficient charge transfer between the hole-blocking layer of TiO2 and Oz-NGQD having enhanced concentration of functional groups. This work suggests ozone treatment as an easy and powerful technique to alter the optoelectronic properties of versatile and scalably produced NGQDs which can be successfully utilized as an eco-friendly photoactive layer to boost the photovoltaic performance of solar cells.

(Poster is private)

PHYS2019HUEYYOU48564 PHYS

Exploring a system of coupled quartic oscillators with coupled cluster methods

Type: Graduate
Author(s): Carson Huey-You Physics & Astronomy
Advisor(s): Magnus Rittby Physics & Astronomy
Location: Session: 1; Basement; Table Number: 7

poster location

Quantum mechanical oscillations of a many-body system about a local potential minimum can in a first approximation be modeled by a set of harmonic oscillators about a local potential minimum. In more sophisticated models one also has to consider anharmonic effects.
Here we present the first steps towards a systematic solution of ground and excited state energies for a set of coupled quartic oscillators using coupled cluster techniques. We present the general approach of the equation of motion coupled cluster (EOM-CC) method. We give illustrative details of the diagrammatic approach to obtaining our operating equations as well as the resulting EOM-CC equations for a simple system of coupled harmonic oscillators perturbed by a quadratic perturbation. We point to the connection with Bogoliubov transformations and finally we illustrate the numerical behavior of the EOM-CC non-linear iterations and matrix diagonalization of our effective Hamiltonian obtained with our Python code.

View Poster

PHYS2019JHA46123 PHYS

Modeling polymerase inhibitor treatment of RSV

Type: Undergraduate
Author(s): Rashmi Jha Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 2nd Floor; Table Number: 5

poster location

Respiratory syncytial virus, or RSV, is a virus that commonly causes lower respiratory tract infections throughout childhood and infancy. Most people who contract the virus recover within a short period of time, but it can cause respiratory illness, hospitalization, and even death within infants and the elderly. Agents that can effectively combat RSV are still not available for widespread clinical use, but one of the targets being investigated is PC786, a novel inhaled L-protein polymerase inhibitor. Using data from previous publications, we created models of the relationship between volume of PC786 and viral load in patients with RSV to try to determine how to best model the action of this drug.

View Poster

PHYS2019LEE28437 PHYS

Carbon Nanomaterials Targeted to Cancer Cells by Non-covalently Bonded Hyaluronic Acid

Type: Graduate
Author(s): Bong Han Lee Physics & Astronomy Elizabeth Campbell Physics & Astronomy Md Tanvir Hasan Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy Giri Akkaraju Biology
Location: Session: 1; Basement; Table Number: 5

poster location

Carbon nanomaterials have recently attracted the interest of the scientific community, in the field of electronics, photonics, material and environmental science, due to their unique physical, electronic, and optical properties. In the context of biotechnology, these nanomaterials have been utilized to deliver cancer therapeutics and gene medicines. For tumor-specific delivery those can be conjugated with biomolecules to target receptors of cancer cells. This allows nanomaterials to bind providing fluorescence-based cancer diagnosis and imaging as well as drug delivery by the nanomaterials. However, conjugation has been accomplished mainly via covalent bonding that may involve toxic reagents and is at times cost-ineffective. For some nanomaterials functionalization may also alter the physiochemical properties rendering them less emissive. In this work, we assessed whether non-covalent bonding to a targeting agent would be enough to focus the intake of graphene oxide (GO) and nitrogen-doped graphene quantum dots (NGQDs) into the cancer cells. The targeting of CD44 receptors via a hyaluronic acid (HA) non-covalently attached to these nanomaterials was evaluated in human breast cancer (MCF-7) cells, which overexpresses the CD44 protein versus healthy (HEK 293) cells that do not overexpress it. In vitro fluorescence microscopy indicated a significant increase in accumulation of HA-conjugated nanomaterials as assessed from their intracellular emission signal. Thus, in this work, we have demonstrated the feasibility of non-covalently bonding HA onto GO and NGQDs as biocompatible nanomaterials for a targeted delivery. Further investigation will compare these findings to accumulation of covalently-attached HA-nanoparticle conjugates and assess the advantages of non-covalent complexation.

(Poster is private)

PHYS2019MCCARTHY57534 PHYS

Effect of the Hill coefficient on estimates of drug efficacy

Type: Undergraduate
Author(s): Gabriel McCarthy Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 2; 2nd Floor; Table Number: 6

poster location

We are modeling the effect of the Hill coefficient on the volume of a tumor. This is to test drugs that may bind to multiple receptors and compare them to each other. We are using Python and used 4 main parameters and one equation. We modeled the Volume and the Dose Response Curves as well as the Emax and Ic50. We used the different positive Hill Coefficients and studied the effect on dose and carrying capacity.

View Poster

PHYS2019MCKINNEY32467 PHYS

Temperature Dependence of Optical Properties of Nitrogen Doped Quantum Dots, Graphene Oxide, and Single-walled Carbon Nanotubes

Type: Undergraduate
Author(s): Tanvir Hasan Physics & Astronomy Ryan McKinney Physics & Astronomy
Advisor(s): Anton Naumov Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 4

poster location

Fluorescing nanoparticles are utilized widely for applications in optoelectronics, sensing, biomedical imaging, and cancer detection. In these applications it is often overlooked that the temperature may affect the optical performance of nanomaterials in optoelectronic devices or even in the biological live systems. In this work we built an apparatus for controllable temperature adjustment of aqueous dispersions of nanomaterials inside the spectrometer as their fluorescence spectra are being monitored. This module is built based on the thermoelectric elements with a corresponding controller and affixed to a cuvette holder of the fluorescence spectrometer. Using this setup, we assess the fluorescence of 0D, 1D and 2D carbon nanomaterials: graphene quantum dots, carbon nanotubes, and graphene oxide subjected to temperatures ranging from room temperature to 100 ⁰C. These experiments will allow us to assess the performance of nanomaterials as they fluorophores at a variety of temperatures and will serve as basis for understanding the thermal effect on their optoelectronic and, potentially, structural properties.

View Poster

PHYS2019MELENDEZ8344 PHYS

Using The Cannon to study the chemistry of the Sagittarius dwarf galaxy

Type: Graduate
Author(s): Matthew Melendez Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Session: 1; Basement; Table Number: 4

poster location

Sagittarius (Sgr), a dwarf galaxy and satellite to the Milky Way, is currently being tidally torn apart. To study the chemistry of Sgr, we have taken thousands of stellar spectra across the galaxy. We have analyzed the stellar component of Sgr member stars by using The Cannon, a machine learning algorithm for determining stellar parameters (temperature, surface gravity, chemical abundances) from stellar spectra. A subset of our stars have previously been observed as part of SDSS/APOGEE survey, at higher quality, which allows us to use these spectra to train The Cannon so that we can obtain accurate abundances for the ~1,200 Sgr member stars. This will allow us to confidently study the formation history and stellar evolution of Sgr, and place it within the context of other dwarf galaxies.

PHYS2019MURPHY60207 PHYS

Understanding the Effect of Measurement Time on Drug Characterization

Type: Graduate
Author(s): Hope Murphy Physics & Astronomy
Advisor(s): Hana Dobrovolny Physics & Astronomy
Location: Session: 1; Basement; Table Number: 1

poster location

In order to determine correct dosage of chemotherapy drugs, the effect of the drug must be properly quantified. There are two important values that characterize the effect of the drug: ε_max is the maximum possible effect from a drug, and IC_50 is the drug concentration where the effect diminishes by half. We use mathematical models to estimate how the values depend on measurement time and model choice. Improper choice of growth model is problematic and can lead to differences in predictions of treatment outcomes for patients. This work intends to understand how choice of model and measurement time affects the relative drug effect and causes the differences in predictions for the most effective dose of anticancer drug for a patient. This work determines the correct doses before trying those in patients to get the most effective therapeutic treatment.

View Poster

PHYS2019PHO52926 PHYS

Effect of Noise applied to Simulated Cancer Growth Model on the Error in Assessment of Anti-Cancer Drug Efficacy

Type: Undergraduate
Author(s): Christine Pho Physics & Astronomy Madison Frieler Biology Angel Guyton Biology
Advisor(s): Hana Dobrovolny Physics & Astronomy Giridhar Akkaraju Biology Anton Naumov Physics & Astronomy
Location: Session: 1; Basement; Table Number: 11

poster location

New anti-cancer drugs are constantly being developed and tested. Effectiveness of these drugs is currently assessed by measuring the reduction in number of cancer cells cultured in experiments as a function of the applied drug dose. These measurements determine the drug dose needed to achieve half of the maximum reduction in cells (IC50) and the maximum effect of the drug (εmax). However, the technique that measures values of IC50 and εmax depends on the time chosen to make the measurements. We have developed a method to analyze the growth of cancer cells in different concentrations of drugs that will provide estimates of both parameters that are independent of measurement time. Here, we computationally simulated the growth of cancer cells according to a logarithmic model, adding different levels of noise. And, we found the error in IC50 and εmax as a function of the level of noise. Development of this new technique will lead to more consistent measurement of the efficacy of known and novel anti-cancer therapies.

(Poster is private)

PHYS2019RAY53904 PHYS

Shooting for Star Cluster Chemical Abundances with The Cannon

Type: Graduate
Author(s): Amy Ray Physics & Astronomy
Advisor(s): Peter Frinchaboy Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 1

poster location

Star clusters are key chemical and age tracers of Milky Way evolution. The use of star clusters to provide significant constraints on galaxy evolution, however, has been limited due to discrepancies between different studies. This work seeks to add additional open clusters into an existing large, uniform chemical abundance system. We analyze spectra of giant stars in 31 open clusters and, using a machine learning method called The Cannon, determine iron abundances. This uniform analysis is compared with previous results, and we present new chemical abundances of 12 star clusters.

View Poster

PHYS2019REEKS46081 PHYS

Does surface polarity of micro- and nano-scale ZnO particles contribute to antibacterial action?

Type: Graduate
Author(s): John Reeks Physics & Astronomy Tabitha Haun Physics & Astronomy Benite Ishimwe Environmental Sciences Bao Thach Engineering Jacob Tzoka Physics & Astronomy Kimon Vogt Engineering
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Session: 2; 3rd Floor; Table Number: 4

poster location

Antimicrobial action of micro- and nanoscale ZnO particles has been documented, but the fundamental physical mechanisms driving this action are still not identified . We hypothesize that one of the key mechanisms behind the antibacterial action of ZnO is rooted in interactions between ZnO surfaces and extracellular material. Crystalline structure of ZnO results in two distinct types of crystallographic surfaces: polar (charged) and non-polar (neutral). The excess charge and electronic states at the polar surfaces of micro- and nano-scale ZnO particles may affect interfacial phenomena with surrounding media. Therefore, it is feasible that the relative abundance of such polar surfaces could significantly influence their antibacterial action. In this study we use a hydrothermal growth method established in our lab to synthesize ZnO crystals with different controllable surface morphologies. We study the effects of relative abundance of polar surfaces on antibacterial action. These experiments performed in conjunction with optoelectronic studies of ZnO crystals yield information regarding the fundamental nature of their antibacterial action.

View Poster

PHYS2019REEKS6818 PHYS

UV-driven stimulated hydrophilicity of hydrophobic polysulfone

Type: Graduate
Author(s): John Reeks Physics & Astronomy Tabitha Haun Physics & Astronomy Benite Ishimwe Environmental Sciences
Advisor(s): Yuri Strzhemechny Physics & Astronomy
Location: Session: 1; 3rd Floor; Table Number: 4

poster location

Polysulfone is a stable and strong semitransparent thermoplastic material that is applicable in many industries due to its resistance to low and high temperatures, as well as unique hydrophobic properties. Hydrophobic films are frequently used in waterproofing devices and to improve the efficiency of water vessels. It was recently discovered that polysulfone has a unique behavior as it changes from being hydrophobic to hydrophilic after exposure to a UV radiation. In order to elucidate the mechanisms behind this phenomenon we are performing surface photovoltage (SPV) studies on polysulfone thin films, which is done for the first time, to the best of our knowledge. Whereas SPV is sensitive to buried interfaces, SPV spectral features contain contributions not only from the polysulfone films, but from the silicon wafer and the silicon oxide layer beneath the polymer films. Thereby, to identify the signal germane to the polysulfone properly, we employ in our studies polysulfone films of varying and controllable thicknesses. To establish controllable methods for producing such films by spin coating, we use different concentrations of polysulfone in solutions with different spin rates. Film thickness is determined employing a thin film analyzer. From these thicknesses, trends are established relating film thickness to solution concentration and spin rate. SPV studies provide initial investigations into surface electronic transitions and mechanisms behind the hydrophobic ‘flipping’ of polysulfone.

View Poster