Filter and Sort


Can white rhinoceros shape the landscape? Implications for game reserve management in South Africa

Type: Graduate
Author(s): Jimmy Greene Environmental Science Tory Bennett Environmental Science Tamie Morgan Interdisciplinary Michael Slattery Environmental Science
Advisor(s): Tory Bennett Environmental Science
Location: Session: 1; 1st Floor; Table Number: 5

poster location

South Africa is unique in that the majority of its wildlife is managed in privately owned game reserves. One major challenge for reserves is maintaining healthy stable populations, particularly with for large species, such as the big five (white rhinoceros (Ceratotherium simum), African elephant (Loxodonta africana), Cape buffalo (Syncerus caffer), African leopard (Panthera pardus), and lion (Panthera leo)). Nevertheless, there has been very little research on management of these charismatic species in such size restricted reserves. To address this need, we are studying the impacts of white rhinoceros on the structure, composition, and spatial distribution of vegetation in Amakhala Game Reserve. The reserve was created in 1999 from 7,500 ha of agricultural land. Since the formation of the reserve, succession of vegetation to a more natural state has been encouraged. However, the introduction of large herbivores, such as the rhino in 2006, may have altered or slowed down this succession. To explore this hypothesis, we conducted a GIS analysis study. Through the use of Landsat imagery, we classified the vegetation type and analyzed historical changes due to rhinos using the Normalized Difference Vegetation Index (NDVI). We hope that these findings will facilitate game reserve management and provide a better understanding of rhino carrying capacity based on the size of a game reserve.


Using GIS analysis to define the watershed that feeds the Mill Branch Mitigation Bank

Type: Graduate
Author(s): Nicholas Haber Environmental Science
Advisor(s): Mike Slattery Environmental Science Becky Johnson Environmental Science Tamie Morgan Environmental Science
Location: Session: 2; B0; Table Number: 13

poster location

The Mill Branch Mitigation Bank (project site) is located in northwest Denton County, Texas approximately 17 miles northwest of the City of Denton and stores stream credits that are used to offset the degradation of our rivers. Mitigation banks also helps the U.S. Army Corps of Engineers achieve the goal of “no overall net loss” of the nations wetland aquatic resource functions that will be lost or impaired by authorized activity. The Mill Branch Mitigation Bank restored 22,876 linear feet of channel and approximately 83 acres of riparian areas within the Mill Branch and Cannon watersheds in Denton County. Before being restored, the Mill Branch stream was used by grazing animals for drinking water. Decades of intensive grazing have caused the channel to degrade, erode and widen; in addition the pasture management and operations have displaced native vegetation. The goal of this project was to define the watershed that drains into the Mill Branch Mitigation Bank, including the historical conditions of the stream and also soils impact on drainage. I used LiDAR data and produced a triangulated irregular network (TIN) that represents the surface of the watershed and then aerial photo were overlaid on the TIN making the surface more realistic. Historical aerial photos were used to examine to the impact of the changes before and after the mitigation occurred. GIS soils data will be used to look at infiltration rates and the impact it has on the volume of water entering into the stream.


GIS Analysis of impacts of Impervious cover on Storm Water drainage and flooding in Central Arlington Heights Watershed, Fort Worth Texas

Type: Undergraduate
Author(s): Alyssa Herge Environmental Science
Advisor(s): Tamie Morgan Environmental Science
Location: Session: 2; B0; Table Number: 8

poster location

This research was designed to address the drainage basin infrastructure in Arlington Heights, Fort Worth, Texas. The Central Arlington Heights watershed is a residential subdivision of roughly 454 acres, dating back to the late 1800’s. Over this extended period, this area has experienced a high rate of urbanization with both commercial and residential development with an ever increasing percentage of the area covered in impervious layers. Subsequently, the original storm water drainage system is outdated and inadequate and several residential properties have experienced significant reoccurring damage from floods.

The previous process of modeling and quantifying the input of impervious cover for storm water drainage design is outdated. A GIS analysis of the impervious cover layer in present conditions is critical in determining the percentage of cover per land parcel and comparing it to the zoning and model parameters set by the city. Using image segmentation, a remote sensing analysis was used to analyze color infrared aerial photography at a resolution of 0.5. Once segmented, a supervised classification was performed to map impervious cover. The percentage of impervious cover per land parcel and land owner was calculated and compared to present storm water design standards and City zoning requirements.


A Day at the Fort Worth Nature Center

Type: Undergraduate
Author(s): Devon Kassler Environmental Science
Advisor(s): Tamie Morgan Environmental Science Robert Denkhaus Environmental Science
Location: Session: 1; 2nd Floor; Table Number: 2

poster location

The Fort Worth Nature Center is a nature reserve located northwest of Fort Worth, Texas. The 3621-acre reserve serves as a huge habitat for an abundant number of terrestrial and aquatic animal species. The nature center uses environmental management practices to keep the refuge as healthy and native as possible. To get a better understanding, game cameras are strategically placed by employees to take “inventor” of what creatures are on the refuge with minimal human interruption.
GIS analysis were conducted to determine species diversity and population based on locations and times. A map was created to show where the game cameras were set up in relation to each other and the boundaries on the property. The game cameras not only provide the photos but the time and date as well. The data from the game cameras were then analyzed individually and sorted to create a population density map. The results were then presented to the management which allowed them to make any adjustment they saw would benefit the refuge. In addition, the results were taken and shared in the form of an ESRI story map on the Fort Worth Nature Center’s website for public educational purposes.


Identifying High Priority Areas for Mitigating Lead Contamination of Drinking Water in Fort Worth

Type: Undergraduate
Author(s): Annaliese Miller Environmental Science
Advisor(s): Omar Harvey Biology Tamie Morgan Geology
Location: Session: 2; 2nd Floor; Table Number: 2

poster location

In 2016, the Fort Worth Independent School District (FWISD) conducted voluntary lead testing of drinking/drinkable water at 127 schools and administrative locations across the district. The goal of this testing was to assess whether students were being exposed to high lead levels in drinking water while at school. There is no level of lead that is considered harmless or acceptable. Because children are still in the developmental phase of growth, they are particularly vulnerable to the negative health effects associated with exposure to lead contamination. Based on current understanding and best guess estimates, the United States Environmental Protection Agency has set a lead action level in drinking water of 15 parts per billion. Results from the FWISD study showed that 60 of 127 locations had lead levels that exceeded the action at one or more sample points. As a corrective measure, steps were taken to remove and replace over 500 non-compliant drinking fountains and other plumbing components. This infrastructure was older and was suspected to be the primary cause of the lead contamination due to the leaching of lead from lead-containing components. However, the issue of lead contamination and its potential link to old infrastructure transcends the school system and necessitates a comprehensive assessment on a citywide level. Given that schools are developed around communities of similar age, the FWISD lead data may be useful as a proxy for assessing wider citywide potential lead-in-water and infrastructure replacement issues. In this project, lead data from the FWISD study was combined with infrastructure-related data, spatial analysis, and spatial statistics techniques to identify potential high-priority areas for the city’s lead pipe replacement project. Infrastructure-related factors included in the analysis are parcel age, pipe material, and pipe age. Greater priority will be given to vulnerable populations, including children, low-income communities, and minorities. The results are likely to indicate which areas of the city are at the highest risk of lead contamination of drinking water and which areas should receive high priority for lead service line replacements and plumbing renovations.


GIS Analysis and Site Plan for All Saints Episcopal School (Fort Worth, TX)

Type: Undergraduate
Author(s): James Reis Environmental Science Blake Henningsen Environmental Science
Advisor(s): Tamie Morgan Environmental Science
Location: Session: 2; 2nd Floor; Table Number: 3

poster location

A GIS analysis was done on All Saints Episcopal School, in Fort Worth, Texas. The objective of the analysis was to gather and study data that pertained to All Saint’s campus. The data utilized included: soil types, geology, elevation contours, vegetation, hydrology, and air photos to show construction development over time. ArcGIS and ArcScene were the two software programs used to map and visualize the data.
All Saints requested an analysis for future use in the development of their campus. Their two main developmental focuses are river restoration, prairie restoration, and site planning. River restoration requires hydrology data such as the watershed as well as topography and soils to show the flow of water across the campus. For site planning, geology and soil data are important for geotechnical engineering and helps insure structure soundness of building foundations. Prairie restoration requires soil and vegetation data in order to plan native vegetation gardens.


Mapping Eastern Red Activity Hotspots to Maximize Mist Netting Success Rates

Type: Undergraduate
Author(s): Kathryn Smith Environmental Science
Advisor(s): Tamie Morgan Geology Tory Bennett Environmental Science
Location: Session: 2; 3rd Floor; Table Number: 10

poster location

The TCU Wind Initiative is involved in research that aims to develop technologies to minimize bat activity at wind turbines in an effort to lower mortality rates. There are six species of bat currently found in the north-central Texas, of which eastern red bats (Lasiurus borealis) comprise the highest proportion of wind turbine-related deaths. To test the effectiveness of potential technologies in a series of behavioral studies, TCU researchers capture wild bats using a mist netting technique in areas where bats are thought to be flying. However, as eastern red bats are nomadic and migratory, the Fort Worth region commonly experiences fluctuations in the number of bats present across the capture season. This study, therefore, aims to identify areas around Fort Worth that have a high probability of eastern red bat presence (i.e., activity hotspots) in an effort to maximize mist netting success rate.
To identify such hotspots, we first determined the habitat preferences and flight patterns of bats from existing literature. We found that different species of tree bat tended to fly at specific heights and distances from tree lines and woodland edges. These differences minimized competition between the species and reduced the risk of predation (i.e., smaller species flew closer to trees). Bats also required access to water. Therefore, by analyzing tree heights, distance between trees, and distance to water sources we were able to identify areas representing suitable habitat for the eastern red bat. We found tree heights by subtracting the bare earth surface model from the first return surface model. We also conducted a sensitivity test to determine how distance from trees influenced habitat connectivity and therefore the extent of habitat suitability. Based on the literature, we selected three distances to test; 10, 30, and 50 m. Finally, water bodies were determined to be areas of no return of LiDAR data. We then used the results of this analysis to inform TCU researchers of areas with a high probability of eastern red bat presence that they should mist net at.


A GIS Analysis of food deserts in Indianapolis, Indiana

Type: Undergraduate
Author(s): Cameron Wilson Environmental Science
Advisor(s): Tamie Morgan Geology
Location: Session: 1; B0; Table Number: 13

poster location

Cameron Wilson
GIS Project- GEOL/ENSC Spatial Analysis 080
March 23, 2017

A GIS Analysis of food deserts in Indianapolis, Indiana

Urban areas all over the country are being classified as food deserts; these are areas in which people either have no access or restricted access to affordable fresh food. In order to live a healthy and fulfilling life humans need to consume fresh food. Many initiatives are underway to aid these desert areas and bring them the fresh food they need. A GIS analysis of Indianapolis was done to identify possible areas that would classify as food deserts. This will allow relief efforts to be better implemented and positively affect more people. GIS analysis of census data that includes income, race, housing, and population density will be used to create maps of possible food deserts. Fast food, gas stations, and grocery stores will be identified and analyzed for accessibility relating to walking distance and public transportation.