COSC2024ANDERSON24097 COSC
Type: Undergraduate
Author(s):
Paige Anderson
Computer Science
Eriife Aiyepeku
Computer Science
Francisco Alarcon
Computer Science
Annalise Gadbois
Computer Science
RC Reynolds
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Basement, Table 4, Position 2, 11:30-1:30
View PresentationCollege students go through many transitions during their time at school. They learn to live on their own, manage household tasks, and balance their academics. A specific change in college is to learn how to grocery shop and cook for yourself. When students move off campus, they go from a dining plan where most of their meals are provided to needing to make all their meals. This results in many students relying on fast food or the same easy meals. Easy Bites, in partnership with TCU’s Nutrition Department, is designed to help students find quick, cheap, and nutritious meals. All our recipes are designed by Nutrition students on campus for college students to add variety to their diet. Easy Bites is composed of two aspects: an online portal for nutrition students to submit recipes for approval, and a mobile app for college students to view recipes. Our mobile app is connected to the Kroger database to provide users with accurate information about specific ingredients prices and availability. By working with the Nutrition Department and connecting with the Kroger database, we are making it easier for students from the deciding on recipes, shopping for the ingredients, and making the meal. With this, Easy Bites makes it easier to make nutritious meals as a college student.
COSC2024GUYETTE61938 COSC
Type: Undergraduate
Author(s):
Eric Guyette
Computer Science
David Ajanaku
Computer Science
Ofuchi Akpom
Computer Science
Madi Cole
Computer Science
Ana Jacobson
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Basement, Table 2, Position 2, 11:30-1:30
View Presentation49 million people in the United States have suffered from anxiety disorder in the past year, and 80 million have suffered in their lifetime. Many traditional methods of treatment, while often helpful, are sometimes inaccessible, time-consuming, expensive, intimidating, or overall impractical. In a world where people are increasingly in need of care and therapists are increasingly burnt out, technology bridges the gap and increases accessibility for those who previously would have been excluded. What CognitV strives to create as a solution is a Virtual Reality Exposure Therapy experience where patients can face their anxiety in a safe, controlled environment through a VR headset. Geared towards players with Social Anxiety Disorder, this treatment method allows patients to safely expose themselves to public speaking and confrontational scenarios from the comfort and privacy of their own homes. This treatment method would be faster and more accessible, is preferred by younger patients, and fills the treatment avoidance gap, all while providing a realistic, immersive experience that can effectively aid in treating mental health disorders, either with or without an accompanying clinician.
Using Virtual Reality and Artificial Intelligence, CognitV creates an immersive environment geared towards Players with Social Anxiety Disorder which allows them to safely expose themselves to public speaking and confrontational scenarios from the comfort and privacy of their own homes.
COSC2024HARRIS53890 COSC
Type: Undergraduate
Author(s):
Westley Harris
Computer Science
Tyler Bartee
Computer Science
Ibrahim Bozkurt
Computer Science
Ali Gasimli
Computer Science
Polina Goncharova
Computer Science
Hiep Nguyen
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Third Floor, Table 6, Position 1, 1:45-3:45
View Presentation“AI Powered Patent Analysis Software”
Patent AI is an online patent analysis tool which gives feedback on uploaded patent application documents and provides a likelihood of it being accepted by the USPTO.
This tool is meant to reduce the rate of rejected patents –being at 90%– and the wait time associated in getting a response from the USPTO.
Our application is informational, accurate, intuitive, and will simplify the patent application process.
COSC2024HUTHER26721 COSC
Type: Undergraduate
Author(s):
Justin Huther
Computer Science
Berkeley Danysh
Computer Science
Mason O'Connor
Computer Science
Rayven Perkins
Computer Science
Tommy Truong
Computer Science
Yash Tyagi
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Basement, Table 8, Position 2, 11:30-1:30
View PresentationIMPROVING COLLECTION MANAGEMENT IN THE MONNIG METEORITE COLLECTION.
R. G. Mayne, J. Huther, Y. Tyagi, B. Danysh, R. Perkins, M. O' Connor, T. Truong, and B. Wei.
Monnig Meteorite Collection, Texas Christian University, 2950 W Bowie Street, Fort Worth, TX 76109 (r.g.mayne@tcu.edu)
Department of Computer Science, Texas Christian University, Suite 341, 2840 W Bowie Street, Fort Worth, TX 76109.
Introduction: Collection Management Software is a vital tool in sample-based science and a key part of any scientific collection of meteorites. However, this software is often designed as a one-size-fits-all solution, which can be used for all collections within a museum. As a result, much of the commercially available software for collections management is not ideal for the curation needs of extraterrestrial materials. Platforms are often vendor-specific, contain redundant and unnecessary functionality, and require significant time to be invested in staff training.Over the past two decades, The Monnig Meteorite Collection has utilized FileMaker Pro for the management of the Collection. FileMaker Pro was chosen as it allows the user to design a custom solution to fit their specifications. However, this either requires that the administrator stays current on all updates and functionality of the software, or continual investment in external support for the system. The current database was designed in 2014 and is no longer meeting the needs of the Monnig Collection or the users of the database, who are primarily sample-based scientists and collectors. After consultation with industry experts, curators, and users of the database, it was decided that an update of the current database was not the best approach for the Collection, instead a new custom database that meets the needs of both the Curator and the user was commissioned.
This project introduces the development of a comprehensive database and user-friendly web application portal, marking a substantial improvement over the existing legacy system.Project Overview: The primary aim of the Monnig Meteorite Database Project, hereafter referred to as MMDP, is to offer a detailed and robust database for the Monnig Meteorite Collection. It will feature an enhanced catalog search portal, enabling users to explore and search the collection through various parameters and filters. The system is also designed to aid gallery curators and administrators by providing detailed views of collection items, tracking sample history, and managing loans, all within a secure and user-friendly interface.
MMDP seeks to preserve the wealth of knowledge encompassed within the Monnig Meteorite Collection. The digital database and search tool will facilitate research and offer broad access to the collection for researchers, collectors, educators, and students. This initiative is set to serve as a valuable educational and scientific resource, equipped with extensive functionalities.
The database is being developed as a senior design project in the Department of Computer Science at Texas Christian University (TCU). The senior design project is a year-long program required of all Computer Science and Data Science graduates, where they work with external clients to develop and implement workable solutions to the briefs provided.
System Development and Preparation: in the Fall 2023 semester, the MMDP Team focused on data preparation and outlining the project scope into needs (must have features for launch), wants (features that are not required at launch but the capability to add them later is required), and wishes (features that are not required). Inconsistencies in the legacy data were identified and corrected; these included repeated entries, varied date formats, typographic errors, and missing fields. Python was utilized for data cleaning, and the team standardized data and organized it into relational database tables using PostgreSQL, hosted on Azure cloud for maintenance and backup.
Development will continue throughout the Spring 2024 semester and the outdated and insecure legacy portal will be replaced with a newly developed web application. This application is being built using Spring Boot for backend operations, and HTML5, CSS, and the VueJS Framework for a responsive front-end UI, ensuring accessibility across various devices. The current launch date for the new collections management system is May 2024.
Functionalities: MMDP will address the need for functionality for both the administrators of the database (primarily the Curator in this case) and the external user (Figure 1). The required parameters for both of these audiences are described below.
All users of the database will be able to:
1. perform parameterized searches using criteria such as Name, Monnig Number, Class, Group, Clan, Country, and Observed Fall or Found (Figure 2a).
2. filter and modify search results directly on the search result page (Figure 2b).
3. Find accessible detailed information about each meteorite sample, including images, from the search results via individual display pages for each sample.
4. download all the search results based on the given constraints with a single click from the search results page.Administrators will be able to
1. have access to specialized functionalities that are secured and restricted from regular users. Upon logging in, they are presented with a portal offering various database management options.
2. view more detailed information about samples than regular users, including the sample's history and loan information. They have the ability to add new meteorite samples or create subsamples.
3. perform data manipulation tasks, such as deleting or modifying existing sample records.
4. have control over the media associated with samples, allowing them to add or delete media.
5. administrators able to create, view, update, and delete history entries for each sample. This historical data management is a key new feature not possible in the current system.
6. Access loan management capabilities include adding, modifying, archiving, and accessing archived loan entries for samples.
7. print labels for samples, which can be used for curation in the vault.Summary: The MMCD stands as a model of integration, combining domain expertise, data best practices, and user-centric design. This project offers a template for other universities, museums, galleries, and research centers aiming to enhance their functionalities and provide a seamless, user-friendly experience for accessing and managing meteorite data collections.
Embodying the spirit of scientific collaboration, this initiative is open to opportunities for collaboration to expand the platform's capabilities or to implement similar solutions in other institutions.Acknowledgments: We are grateful to the Department of Computer Science at TCU for their continued support of the Monnig Meteorite Collection through the Senior Design project. We also thank Dustin Dickens for his advice and assistance in the discovery portion of the database redesign.
COSC2024KUMAR36711 COSC
Type: Undergraduate
Author(s):
Ayush Kumar
Computer Science
Tyler Donnelly
Computer Science
Danny Mairena
Computer Science
Advisor(s):
Wei Bingyang
Computer Science
Location: Basement, Table 7, Position 3, 11:30-1:30
View PresentationThe Department of Computer Science at Texas Christian University offers a course where senior students, in teams, collaborate with clients to solve real-world software problems. Students handle every project phase: definition, analysis, design, implementation, testing, deployment, and documentation. However, in these teams, there's a variation in how much each student contributes. Some are very active, while others are not. Communication issues can also arise. To handle these challenges and improve team efficiency, there is a Student Performance Tracking system in place that includes Weekly peer evaluations where each student evaluates their own teammates in accordance with the rubric defined by the professor and Weekly Activity Reports (WAR) where each student writes down their own contributions for the week.
While this system works and improves team efficiency, these tools are too manual and thus time consuming. For the WAR, each student has to edit the Google Docs document for the week which is then reviewed by the professor. This can lead to human error, meaning some students might not get the right credit if they make mistakes while filling out the Google Docs document. For the Peer Evaluation, each student must review the WAR for the week and then make an excel spreadsheet to evaluate their teammates and then upload it to TCU Online. Once all students have turned in their peer evaluation report for the week, the professor has to download reports of all students and then run these through a Java program which then calculates the results for all students. Then the professor uploads the results to TCU Online (a course management tool used by TCU). Not only does this leave room for human error on the students' side (spreadsheets must have the right columns), but it is also very time consuming for the professor as they have to download all reports manually from TCU Online and then run the Java program and finally upload the results back to TCU Online.
The automated Student Performance Tracking system (Peer Evaluation Tool) streamlines the evaluation process by providing a centralized website where students can directly fill out their Weekly Activity Reports (WARs) and complete peer evaluations. It also enables them to view their own submitted WARs and received peer evaluation scores from their teammates. For the instructor, the system offers the functionality to create and customize evaluation rubrics, which ensures consistency in peer assessments. Instructors can access and review all peer evaluations and WARs, allowing them to monitor team dynamics and individual contributions efficiently. This comprehensive solution eliminates the manual handling of documents and the need for external spreadsheet software, thereby reducing human error and saving time for both students and instructors.
COSC2024LEATH38806 COSC
Type: Undergraduate
Author(s):
Harrison Leath
Computer Science
Blake Good
Computer Science
Duc Toan Nguyen
Computer Science
Advisor(s):
Liran Ma
Computer Science
Ze-Li Dou
Mathematics
Yang Yang
Psychology
Location: Basement, Table 4, Position 3, 1:45-3:45
View PresentationThis presentation investigates the learning process of artificial intelligence by training a model to play the game of Go using an AlphaZero-type algorithm. Through evaluation of 12 Go models, the authors reveal the split personality many exhibit, much like the famous Schreiber book Sybil. The best models appear indistinguishable from human players in the early stages of the game before devolving into self-destructive tendencies in the endgame. Possible remedies for this behavior are explored through modifying training data generation, hyperparameter tuning, and optimizing neural network input dimensions.
COSC2024MARTIN19179 COSC
Type: Undergraduate
Author(s):
Lucas Martin
Computer Science
Joseph Herzog
Computer Science
Vinh Ly
Computer Science
Esau Rodriguez
Computer Science
Ryan Usell
Computer Science
Sean Wymer
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Second Floor, Table 7, Position 1, 11:30-1:30
View PresentationIn the dynamic environment of venues with large seating capacities, efficient management of seating occupancy emerges as a critical challenge. Traditional manual monitoring methods are often cumbersome and prone to inaccuracies, hindering optimal seat allocation and event management. Addressing this issue, our senior design project introduces an AI-based solution tailored to revolutionize real-time seating availability reporting for event organizers.
This project aims to provide a comprehensive tool that enables event organizers to track seating occupancy in real-time, facilitating the identification of peak attendance periods and enabling data-driven decision-making. By harnessing the power of artificial intelligence, our system offers a detailed analysis of seating patterns, thereby enhancing the efficiency of event operations and optimizing resource allocation. The ultimate goal is to improve the event experience for both organizers and attendees by ensuring a seamless flow of information regarding seating availability, leading to more effective management of large-scale events. Through this initiative, we endeavor to set a new standard in venue management, where technology and data converge to create smarter, more responsive event environments.
COSC2024MEJIA41799 COSC
Type: Undergraduate
Author(s):
John Mejia
Computer Science
Taylor Griffin
Computer Science
Jaxon Hill
Computer Science
Nagato Kadoya
Computer Science
John Nguyen
Computer Science
Advisor(s):
Liran Ma
Computer Science
Bingyang Wei
Computer Science
Location: Second Floor, Table 4, Position 1, 11:30-1:30
View PresentationEfficient teacher-student interaction analysis is essential for educators to enhance teaching quality. Traditional manual review methods are excessively time-consuming and can yield subpar feedback. ClassifAI offers a streamlined solution for educators to gain insights without sacrificing work hours, utilizing the OpenAI Whisper model for transcription and a fine-tuned Gemma model for question categorization.
ClassifAI is advancing existing tools by addressing four key improvements: transitioning to local hosting for cost savings and data security, integrating the WhisperX model for improved transcription accuracy, automating Costa's Three Levels of Thinking question classification via Google's Gemma, and upgrading the web interface for better user experience.
ClassifAI's architecture comprises a user-friendly web server with ExpressJS and React, a local MongoDB database, a fine-tuned Gemma model for question categorization, and WhisperX for speech-to-text. ClassifAI offers speech recognition, diarization, question categorization, and analysis, delivering enhanced performance. Educators easily upload their teaching audio/video on our platform via a file or YouTube, which is then processed by our GPU server for transcription and analysis. The resulting transcript, graphs, and metrics are accessible for review and can be exported in various formats.
COSC2024NGUYEN28614 COSC
Type: Undergraduate
Author(s):
Hiep Nguyen
Computer Science
Advisor(s):
Bingyang Wei
Computer Science
Location: Basement, Table 2, Position 3, 1:45-3:45
View PresentationSpeech impairment ranks among the world's most prevalent disabilities, affecting over 430 million adults. Despite its widespread impact, many existing video-conferencing applications lack a comprehensive end-to-end solution for this challenge. In response, we present a holistic approach to translate American Sign Language to subtitles in real time by leveraging advancements in Google Mediapipe, Transformer models, and web technologies. In March 2024, Google released the largest dataset for the problem domain with over 180 GB in size, containing ASL gesture sequences represented as Mediapipe numeric values. Our methodology begins with the implementation and training of a Transformer model using preprocessed Google dataset, followed by the establishment of a back-end server equipped with the trained model. This server handles video input preprocessing and real-time inference, communicating with client services as a REST endpoint. To demonstrate the practicality of our approach, we developed a video conferencing application utilizing the AgoraRTC SDK, which communicates with our back-end server to transcribe user gestures to text in real time, displaying them on the receiving end. Through this end-to-end system, we enable video calls enhanced by the real-time transcription of fingerspelled gestures with low latency and high accuracy, effectively bridging the communication gap for individuals with speech disabilities. With a growing imperative for AI applications engineered for human well-being, our project seeks to promote the integration of AI in applications designed to enhance human wellness, thus bringing the broader awareness and adoption of this endeavor.
ENGR2024ACHOLA10934 ENGR
Type: Undergraduate
Author(s):
Clarice Achola
Engineering
Blake Rendon
Engineering
Advisor(s):
James Huffman
Engineering
Randall Kelton
Engineering
Mark Young
Engineering
Location: Basement, Table 1, Position 3, 11:30-1:30
View PresentationWood is a fundamental material in various industries, from construction to furniture making. Understanding its mechanical behavior is crucial for optimizing its use and ensuring structural integrity. This study investigates six different wood types under flexural loading, offering insights into their performance in real-world applications. By analyzing key parameters such as density, flexural strength, and stiffness, this research aims to provide valuable data for informed material selection and design optimization. The wood types under scrutiny comprise white oak, birch, bamboo, maple, pine, and walnut with two contrasting grain configurations.
Key parameters: Density, Flexural Strength, Flexural Stiffness
ENGR2024BIRBECK44948 ENGR
Type: Undergraduate
Author(s):
William Birbeck
Engineering
Gbolahan Esan
Engineering
Isaac Ko
Engineering
Aeron Pennington
Biology
Kyler Van Grouw
Engineering
Advisor(s):
Robert Bittle
Engineering
Shauna McGillivray
Biology
Location: Second Floor, Table 4, Position 2, 11:30-1:30
View PresentationEffective disinfection of medical surfaces is crucial in preventing healthcare-associated infections. The objective of this study was to compare two techniques for transferring bacteria, specifically Staphylococcus epidermidis, from contaminated medical surfaces to agar plates for growth assessment. The first technique involved imprinting the contaminated surface directly onto the agar plate, while the second technique utilized a sterile swab to pick up bacteria and transfer them to the agar plate. Results indicated a significantly higher percentage of bacterial transfer using the imprint technique compared to the swab technique. Consequently, the imprint technique was selected for further investigation to quantify results related to the disinfection of contaminated medical surfaces. This study underscores the importance of selecting appropriate bacterial transfer techniques for accurate assessment of surface disinfection efficacy in healthcare settings.
ENGR2024ELROD17938 ENGR
Type: Undergraduate
Author(s):
Claire Elrod
Engineering
Advisor(s):
Hubert (Seth) Hall
Engineering
Location: Second Floor, Table 6, Position 1, 1:45-3:45
View PresentationThe two-microphone impedance tube test method is a well-established and widely used technique for determining the acoustic absorption coefficient and impedance ratio of materials. This method uses two closely spaced microphones to simultaneously measure the incident and reflected sound waves. A two-microphone impedance tube measurement system made of 6061-T6 Aluminum with a diameter of 3 inches, a 0.5 inch wall thickness, and microphones spaced 2.7 inches apart has been constructed for undergraduate research at Texas Christian University (TCU). These geometrical values suggest a usable frequency range of 50 Hz to 2637.77 Hz as referenced in ASTM Standard E1050-19. Validation of the system was achieved by taking measurements on Owen Corning Type 705 pressed fiberglass board with a 1-inch thickness and comparing them to absorption data provided by the manufacturer. Additional validation measurements were taken without a test sample in place. All validation tests suggest that the TCU impedance tube is an accurate measurement system.
ENGR2024GONAS49528 ENGR
Type: Undergraduate
Author(s):
Eli Gonas
Engineering
Kate Folkens
Engineering
Rose Ibarra
Engineering
Isaac Nieto
Engineering
Marcus Semmelmann
Engineering
Advisor(s):
Robert Bittle
Engineering
Location: Third Floor, Table 5, Position 2, 11:30-1:30
View PresentationBacteria, the primary agents of infection in humans, are present on nearly all surfaces. To mitigate the spread of bacteria and infections, disinfectants are commonly used. This study explored the effectiveness of common disinfectants and different methods of disinfection, primarily focusing on the use of spray pumps and a transducer as a mechanism to disinfect surfaces using 70% IPA (Isopropyl Alcohol) or ethanol (often referred to by the brand name Lysol). Tests were conducted on bacterial lawns before incubation. The effectiveness of the tests was determined by observing bacterial growth over the next 24 hours after disinfection. Testing proved that both ethanol and 70% IPA are effective in stopping bacterial growth. While both the transducer and spray pump methods showed success, the transducer/ethanol combination was particularly efficient, using the least amount of disinfectant.
ENGR2024LE12719 ENGR
Type: Undergraduate
Author(s):
Nhu Le
Engineering
Advisor(s):
Jim Huffman
Engineering
Location: Basement, Table 7, Position 1, 11:30-1:30
View PresentationThermal oxidation is an important process to create a thin film of silicon dioxide on silicon substrates in microfabrication. In this project, thermal oxidation characteristics on the silicon wafer will be analyzed through experiments in the clean room. The research method was conducted in the thermal oxidation furnace in the TCU Cleanroom on nine wafers with different placement orientations in the furnace and three different oxidation temperatures: 950°C, 1000°C, and 1050°C. In addition, oxide thickness measurements between different locations on the wafer were taken to investigate the film uniformity. The data analysis showed three trends: 1. oxide thickness varies across the wafers, 2. oxide thickness varies as a function of the furnace location, and 3. oxide growth rate varies as a function of furnace temperature. This project investigates how these factors impact thermal oxidation, one of the most critical steps in microfabrication
ENGR2024MARTINEZ60960 ENGR
Type: Undergraduate
Author(s):
Lorenzo Martinez
Engineering
Devin Olmedo
Engineering
Advisor(s):
Sue Gong
Engineering
Location: Basement, Table 14, Position 2, 1:45-3:45
View PresentationThe Digital Micro-Mirror Device (DMD), which was originally developed for digital projection using visible light source, has seen numerous applications in automotive, manufacturing, spectroscopy, and underwater imaging that require wavelength beyond visible. The DMD window is an important part of the packaging that protects the digital mirror array. Since the light goes through the top and bottom surfaces of the window glass twice during operation, the transmittance of the window is usually optimized for the range of wavelengths specified by the applications through optical coatings. In this research work, we will explore the effectiveness of the optical coatings for different types of glasses for window transmittance improvement in visible and near-infrared wavelengths. We will evaluate the transmittance of the existing DMD window glasses and explore ideas of improving transmittance in the NIR range without compromising the effectiveness in the visible light range. In doing so, we would be the light efficiency of the DMD in a wider wavelength range.
ENGR2024MASKER53402 ENGR
Type: Undergraduate
Author(s):
Miles Masker
Engineering
Advisor(s):
Tristan Tayag
Engineering
Location: First Floor, Table 3, Position 1, 1:45-3:45
View PresentationThis research focuses on developing an optical metrology system to characterize the 3D refractive index profile of intraocular Lenses (IOLs) and contact lenses. Recent innovations in IOLs and contact lenses have facilitated the creation of lenses with finely controlled refractive index gradients across their surfaces, and as a result, the demand for precise metrological techniques has increased. Optical Phase Computed Tomography (OPCT) holds as a possible method for precisely characterizing these gradients. OPCT operates on the principle of the parallel ray approximation, which assumes that the rays passing through a surface remain unaltered in angle and continue parallel. OPCT has proven effective in determining the refractive index of optical fiber, this success can be attributed to the minimal deviation from parallel ray assumption of the optical fiber. This study aims to ascertain the feasibility of using OPCT for the characterization of intraocular lenses (IOLs) and contact lenses. Our approach involves replicating, through simulation, the previously studied optical fiber to determine the maximum deviation angle from the parallel ray assumption. Utilizing simulated models of IOLs and contact lenses, we investigate the repercussions of deviations from the parallel ray assumption on OPCT precision. We aim to compare these findings to the established deviation observed in fiber optic studies. This comparative analysis will offer insights into the potential applicability of OPCT for IOLs and contact lenses, allowing for further development of enhanced optical metrology techniques.
ENGR2024MITCHELL22670 ENGR
Type: Undergraduate
Author(s):
Taryn Mitchell
Engineering
Riley Briggs
Engineering
Nhu Le
Engineering
Jackson Ray
Engineering
Jackson Schriver
Engineering
Advisor(s):
Robert Bittle
Engineering
Location: Basement, Table 4, Position 1, 1:45-3:45
View PresentationEffectiveness and Efficiency of UV-C Lights at Killing Bacteria:
Bacteria lie on surfaces all around us, resulting in a desire to clean or disinfect them to avoid the adverse effects of bacteria. One popular method is UV-C light, which has a wavelength of 200-280 nanometers. This study aimed to determine the effectiveness of UV-C lights in killing bacteria. Tests were conducted using a power sensor and bacterial lawns to determine the impacts of different variables on the effectiveness of UV-C lights. Testing measures were taken to ensure that all data was collected independently and identically. It was found that height, surface placement under UV-C lights, electrical power to lights, and reflectivity had the most significant impact on the effectiveness of the light. When optimizing these variables, it was found that with three and two lights there was a substantial bacteria kill rate once the exposure exceeded 3 seconds. This study has proven that UV-C is an effective and efficient way to kill bacteria on surfaces.
ENGR2024SULLIVAN61611 ENGR
Type: Undergraduate
Author(s):
Brian Sullivan
Engineering
Advisor(s):
James Huffman
Engineering
Location: Third Floor, Table 5, Position 1, 11:30-1:30
View PresentationThis project delved into the multifaceted world of blacksmithing, merging scientific inquiry with traditional craftsmanship to understand the nuances of metal work and material sciences. The primary objective was to immerse in the practicality of the craft, with the intent of learning the use of essential tools, the operational aspects of a forge, and further developing my knowledge of material properties of metals. In the aspect of material properties, a target was made to cultivate a comprehensive understanding of the manipulation of metal properties, utilizing heat treatment, cooling, and knowledge of metallurgical behavior.
Key milestones were set, including the acquisition of competencies in manipulating metal through heating, working, and cooling to craft rudimentary objects like hooks and nails, progressing towards more intricate creations such as knives and ornamental ironworks. The project's methodology was twofold: an investigative theoretical approach entailing the study of literature and visual resources to build a foundational knowledge base, and an empirical approach through active participation in local blacksmithing workshops.
The culmination of the project saw the successful completion of a functional coat rack and a knife forged from a railroad spike, reflecting both the learned techniques, material science, and personal creative expression. The analytical engagement with metals and forging methods paved the way for producing personalized, high-quality metalworks. The endeavor not only honed a distinctive skillset but also unveiled the potential for a post-graduate entrepreneurial venture specializing in custom-made tools and decorative arts, thereby intertwining the art of blacksmithing with contemporary business opportunities.
ENSC2024BONECK52618 ENSC
Type: Undergraduate
Author(s):
Megan Boneck
Environmental Sciences
Audrey Haffner
Environmental Sciences
Gisela Pacheco
Environmental Sciences
Zoey Suasnovar
Environmental Sciences
Advisor(s):
Bredan Lavy
Environmental Sciences
Location: Basement, Table 12, Position 1, 11:30-1:30
View PresentationUrban trees provide a variety of ecosystem services to an area that allows both humans and animals to thrive in their vicinity. The ecosystem services provided are able to be determined through specific aspects of a tree and their location in relation to buildings and ground cover. These ecosystem services include carbon sequestration, air quality improvement, avoided runoff, and energy effects. Texas Christian University (TCU) was designated a tree campus by the Arbor Day Foundation meaning they commit to making sure that they are planting and preserving the trees that are in their care. This study’s purpose was to determine the ecosystem services provided by the trees in TCU’s care, including the costs of each tree and the services that they provide. By surveying the diameter at breast height (DBH), total height, crown base height, species, crown health and exposure, canopy size, ground cover, and health we are able to determine what services are being provided by the TCU trees. Determining the services is possible through the service iTree Eco where the data was inputted allowing its use in the estimation of the services that the trees provide.
ENSC2024DAVIS34322 ENSC
Type: Undergraduate
Author(s):
Katherine Davis
Biology
Advisor(s):
Esayas Gebremichael
Environmental Sciences
Victoria Bennett
Environmental Sciences
Location: Basement, Table 7, Position 2, 1:45-3:45
View PresentationAlthough bats are extremely important ecosystem service providers, they face challenges accessing suitable drinking resources in urban environments. The objective is to conduct a comprehensive geospatial analysis to assess water sources within Tarrant County. Factors such as tree cover, surface area, and proximity to roads will be evaluated and mapped to determine the suitability of these water sources for bats. The resulting data will contribute valuable insights into the spatial distribution of drinking resources for local bat populations, aiding in conservation efforts and habitat management in the region.
ENSC2024KNOWLTON25097 ENSC
Type: Undergraduate
Author(s):
Tristan Knowlton
Environmental Sciences
Miki Nisbet
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Environmental Sciences
Location: Second Floor, Table 4, Position 1, 1:45-3:45
View PresentationAlong the coastlines of America, specifically along the Pacific Coast and the Gulf of Mexico, rising sea levels are causing great levels of coastal erosion, leading to the loss of coastal homes and ecologically valuable land. Climate change affects the rate at which sea levels rise, which in turn determines how quickly coastlines are eroded. The objective is to analyze coastal maps of California and the Gulf of Mexico to determine which coastal factors facilitate or hinder the degradation of coastlines.
ENSC2024PERTZ62602 ENSC
Type: Undergraduate
Author(s):
Maria Pertz
Environmental Sciences
Advisor(s):
Brendan Lavy
Environmental Sciences
Location: Third Floor, Table 5, Position 3, 11:30-1:30
View PresentationIn a recent survey by IBM, 51% of respondents from 10 major global economies stated that sustainability is more important to them today than it was 12 months ago (Emeritus, 2022). Historically, influential corporations have disregarded the triple bottom line and have ignored the effects their supply chains have on the environment, people, and the economy, and in turn, made negative contributions to sustainable development. To reduce and eventually eliminate the harm, many companies are now creating sustainability plans to monitor their progress. Sustainability planning and reporting have gained traction in the last decade given the push for standardization, the need for transparency from consumers, and improved environmental social governance metrics within their business operations. Today, there are over 600 different sustainability reporting standards, industry initiatives, frameworks, and guidelines that have improved the transparency, consistency, and interoperability of sustainable practices (Brightest, 2024). One of the most widely adopted frameworks is the Global Reporting Initiative (GRI). GRI created the first global sustainability and social impact measurement standards in 1997, and they help businesses and other organizations take responsibility for their impacts, by providing them with a global common language to communicate those impacts (Global Reporting Organization, n.d.).
The purpose of this research is to examine the contents of 10 sustainability reports across five industries and document their actions towards sustainable development. I will focus on how companies are not only reducing their environmental impacts but also protecting workers and contributing to society. Understanding the degree to which companies are addressing these challenges is crucial to measuring their progress and determining if they are advancing toward sustainability.
ENSC2024ROUSSEL54711 ENSC
Type: Undergraduate
Author(s):
Kaitlyn Roussel
Environmental Sciences
Advisor(s):
Tory Bennett
Environmental Sciences
Location: First Floor, Table 1, Position 1, 11:30-1:30
View PresentationAnalyzing the calls a bat emits is one of the main ways to identify a species. We use bat acoustic detectors to filter these ultrasonic sounds produced. As technology advances, so do these detectors. Wildlife Acoustics Inc. produces bat acoustic detectors constantly. These detectors are then tested with older models to see if they produce the same results. We, therefore, conducted a study to test the next generation of bat acoustic detectors to the older models by Wildlife Acoustics Inc. We tested all three detectors at the same site, over the same period, and analyzed the results to see if the newest model was. This study took place in the flight room on Texas Christian University's campus between the dates of 03/01 - 03/08/2024, in Fort Worth Texas.
ENSC2024SUASNOVAR59513 ENSC
Type: Undergraduate
Author(s):
Zoey Suasnovar
Environmental Sciences
Advisor(s):
Esayas Gebremichael
Geological Sciences
Brendan Lavy
Environmental Sciences
Location: Second Floor, Table 2, Position 2, 1:45-3:45
View PresentationAs the Capital of Texas, Austin has been a great exemplar in the protection and preservation of trees within their city limits. Austin has had a commitment to these trees for decades, but what do the trees do for the city of Austin? This poster focuses on the sidewalks of downtown Austin, and what percentage of them are covered by the canopy of these trees. Using Geographic Information Systems (GIS) we calculate the percentage of the canopy cover overlaying the sidewalks. Understanding the canopy cover allows us to also find the walkability score of downtown Austin. A tree's canopy provides shade, and when placed over a sidewalk, it provides an escape from the omnipresent heat in Austin in the Texas summers. People in areas of lower-socioeconomic status tend to have reduced trees (and greenspace in general) compared to those of a higher-socioeconomic status. By determining an area's walkability score, we can also find areas of desire where greenspaces and trees can benefit the people living there.
ENSC2024WALLACE32101 ENSC
Type: Undergraduate
Author(s):
Justyn Wallace
Environmental Sciences
Advisor(s):
Victoria Bennett
Environmental Sciences
Location: Second Floor, Table 8, Position 3, 11:30-1:30
(Presentation is private)