Filter and Sort







GEOL2020ALLEN25238 GEOL

Illinois agriculture: An examination of the relationship between annual corn crop yield and the application of Atrazine.

Type: Graduate
Author(s): Dalton Allen Biology
Advisor(s): Esayas Gebremichael Geological Sciences

Herbicides are chemicals frequently used in agriculture to manage or remove unwanted vegetation (i.e., weeds) that may negatively impact crops through resource competition. Through the elimination of these competitors, losses in crop yield may be reduced thus increasing cropland productivity. Atrazine is an herbicide that is widely used in the United States for the control of weeds that is predominately applied in the agriculture of corn, sorghum, and sugarcane. This is of interest to Illinois agriculture, as according to the United States Department of Agriculture (USDA), Illinois is a major agricultural producer of corn and soybeans with corn accounting for 11 million of Illinois’ 27 million acres of cropland. Further, Illinois possesses an agricultural industry that produces more than $19 billion annually of which corn accounts for more than 50 percent. It is due to the economic importance of corn crops to the state of Illinois and the widespread use of Atrazine in the agriculture of corn, that this project seeks to examine the relationship between Illinois annual corn crop yields and Atrazine application. This relationship will be assessed through analysis of spatial data acquired from the USDA for Illinois Atrazine application and corn crop yield.

View Presentation

GEOL2020KOLLI40047 GEOL

Analysis of Deforestation in Nilgiri Biosphere Reserve

Type: Undergraduate
Author(s): Navya Kolli Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences

Analysis of Deforestation in Nilgiri Biosphere Reserve
This research will focus on Nilgiri Biosphere Reserve, a mountainous region located in the Western Ghats of southern India that encompasses several major national parks. Recent developments have caused mass deforestation in the region for lumber and area for plantations. In addition, more roads are being developed connecting urban centers to Nilgiri, which is only worsening the deforestation issue. In this research, Landsat satellite images will be used to track change over time with regards to deforestation and the development of road networks to see how that impacts wildlife. Geospatial data geoprocessing tools will be used to categorize change in land use over time (the change in some land areas from forest/untouched reserve to agricultural or road). False and true color composites in addition to Normalized Difference Vegetation Index (NDVI) assessments will be undertaken to track the deforestation and differentiate between land types, since vegetation will be in a bright red, soil will be brown, and urban areas will be cyan blue to determine how much live green vegetation there is in the reserve as well.

View Presentation

GEOL2020KOLLI46982 GEOL

Assessing Land Use Impact on Urban Heat Island Formation in Fort Worth

Type: Undergraduate
Author(s): Navya Kolli Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences

Assessing Land Use Impact on Urban Heat Island Formation in Fort Worth

This research project will focus on assessing the impacts of human activity on the environment in Fort Worth as urbanization has increasingly taken hold over the years. Specifically, the project focuses on analyzing the change in land use in the city over a span of roughly three decades and its contributions to urban heat island formation. Landsat band data products will be used to estimate variations in land surface temperature (LST). LST calculations will highlight the factors contributing to urban heat island formation in Fort Worth.

(Presentation is private)

GEOL2020MUGISHA7301 GEOL

Fungal alterations of Plant Biomass and Impacts on Sorption organic cations: Model study of Coffee grounds and Gentian violet.

Type: Undergraduate
Author(s): Jesse Mugisha Geological Sciences
Advisor(s): Harvey Omar Geological Sciences

Plant biomass represents an important component within the biogeochemical cycling of nutrients and contaminants. Transformation of this plant biomass in the environment to organic residuals is dictated primarily by interactions with micro-organisms specifically fungi. My research investigates the effects of fungal colonization of spent coffee grounds as a model for plant biomass to organic matter transformation and how this transformation impacts environmental stability and its ability to bind to contaminants. This presentation will cover; 1) physical and chemical changes in the spent coffee grounds after molding for 0,3,4,5 and 7 months, 2) how these physical changes impact the environmental degradability, and 3) how these physical and chemical changes impact the capacity to bind Gentian violet dye (as a model for organic cations).

View Presentation

GEOL2020PRINES56945 GEOL

U-PB DETRITAL ZIRCONS OF SYNOROGENIC CARBONIFEROUS DEEP-WATER CLASTIC DEPOSITS IN THE OUACHITA MOUNTAINS, ARKANSAS, UNITED STATES

Type: Graduate
Author(s): Shaun Prines Geological Sciences Walter Manger Geological Sciences Xiangyang Xie Geological Sciences
Advisor(s): Xiangyang Xie Geological Sciences

The southern margin of the North American continent transformed from a passive margin to an
active margin during the Ouachita orogeny. Thick and near–continuous Paleozoic successions in
the Ouachita Mountains provide a unique opportunity to document changes in both
sedimentation and tectonics. In contrast to well-documented Taconic, Acadian, and Alleghenian
orogenic events, limited detrital zircon studies of the Ouachita orogeny and associated
successions have been published, and sediment sources of these deep-water, synorogenic clastics
remain less constrained.
In this study, a total of six outcrop samples (n=617) from the Mississippian Stanley Group and
Lower-Middle Pennsylvanian Jackfork and Johns Valley Groups were collected and processed
for U-Pb detrital zircon geochronologic analyses to depict sediment sources and dispersal
patterns during the Ouachita orogeny. Results show that the age distributions of the
Carboniferous deep-water clastic deposits in the Ouachita Mountains are characterized by major
peaks of the Paleozoic (~350-500 Ma), Grenville (~900-1350 Ma), and Midcontinental GraniteRhyolite (~1350-1500 Ma), minor peaks of Yavapai-Mazatzal (~1600-1800 Ma) and Superior (>
~2500 Ma) provinces. These deep water clastics share great similarities with the Appalachian
sources and are likely derived from similar sources. From the Mississippian Stanley Group to the
Pennsylvanian Jackfork and Johns Valley Groups, the Yavapai-Mazatzal population shows
marked enrichment (up to ~12%), suggesting Precambrian basement uplifts, possibly related to
the Ancestral Rockies to the northwest, might be another potential source. Compilation and
comparison show the Neoproterozoic age population (~550-800 Ma), most likely associated with
the peri-Gondwana terrane to the south, ranges from 3% to 35% within the Mississippian Stanley
Group. The variation indicates that the Stanley Group may have strong but short-lived local
contribution from the Gondwana terrane in addition to the regional Appalachian sources.
Overall, despite its proximal location, these Carboniferous deep-water clastic deposits in the
Ouachita Mountains received limited contribution from the Ouachita orogenic belt itself.

View Presentation

GEOL2020TUCKER62356 GEOL

Trail Network Analysis of the TCU Tropical Biology Station

Type: Graduate
Author(s): Mary Tucker Geological Sciences
Advisor(s): Esayas Gebremichael Geological Sciences Dean Williams Biology

The new world tropics represent an area of unparalleled biodiversity. Unfortunately, it also represents an area of increasing habitat loss and consequently is in dire need of protection and conservation. The TCU San Ramon Tropical Biology Station located on the Caribbean slope of Costa Rica protects 100 hectares of primary and secondary forest and is a unique and ideal location for studying tropical biology. In the summer of 2018, we mapped an updated trail network at the station using a Bad elf sub-meter GNSS receiver in conjunction with Arc Collector. For this project we analyzed the distance each trail traveled through the 3 habitat types found at the station (primary forest, secondary forest, and pasture land), which will be used to aid the sampling efforts of my Master’s thesis project examining how mixed-species foraging flocks utilize the habitat protected by the station.

View Presentation

GEOL2020WALKER45567 GEOL

Quantifying the Hydrological Setting of Upper Flow Regime Channels of the Triassic Dockum Group of West Texas

Type: Graduate
Author(s): Samuel Walker Geological Sciences John Holbrook Geological Sciences
Advisor(s): John Holbrook Geological Sciences

The Triassic Dockum Group of the western Texas High Plains is studied in depth paleontologically, but until recently lacked a detailed sedimentological evaluation. Recent research of the Dockum Group in Palo Duro Canyon, Texas, provides new interpretations of the complex fluvial lacustrine strata of the comprising formations based on analysis of individual lithofacies. Identified within the lithofacies assemblages are numerous channel belts composed of upper flow regime bedforms. Observed upper flow regime bedforms in outcrop range from upper plane bed, antidunes, breaking antidunes, chutes and pools, and cyclic steps with increasing flow velocity respectively. These channel belts record extreme flow events from repeating massive storms that perpetuated throughout the Texas region of Triassic Pangea. These unique reservoir-quality channels are interpreted to be resultant of a megamonsoonal climate producing massive pulses of rapid flow allowing for the preservation of upper flow regime bedforms. While these channels are identified in outcrop they have not been quantified in distribution, variability in fill, connectivity and formative discharge.
This study aims to test the megamonsoonal hypothesis by quantifying the discharge of these channels and testing if the distribution density and paleodischarge of these channels is consistent with local dominance of megamonsoonal conditions. Upper flow regime structures are rarely preserved in the rock record and extremely difficult to observe directly during natural formation in modern rivers. Most of the equations used to quantify flow conditions for these structures are derived from flume tank experiments. These are applied to the upper flow regime bedforms found in outcrops of the Dockum Group to reconstruct paleohydrology. Current flume tank research reinforces Kennedy’s equations defining relationships between the wavelengths of stable antidune apexes (λ), mean flow depth (hm) and mean flow velocity (U). These equations are modified to account for different upper flow regime structures formed under increasing velocity and discharge identified in outcrop. Bedform distribution, size, and type are variables determined from outcrop measurement. Paleoflow velocities, Froude numbers and relative water depths are determined with an observed margin of error. Scaling relationships and field measurements provide constraints on channel cross sectional area and channel-belt density. This data along with grain size distribution provides tangible numbers for calculating formative discharge. Preliminary results align with data from flume tank experiments and are consistent with major floods produced by substantial storm events verifying the megamonsoonal hypothesis.

View Presentation

GEOL2020WEST44597 GEOL

Campanian-Maastrichtian Ankylosaurs of West Texas

Type: Graduate
Author(s): Bryanna West Geological Sciences
Advisor(s): Arthur Busbey Geological Sciences

View Presentation

ENSC2019HUDGENS33438 GEOL

Monarch Butterfly Population Decline

Type: Graduate
Author(s): andrew hudgens Geological Sciences
Advisor(s): Tami Morgan Geological Sciences
Location: Session: 2; Basement; Table Number: 2

presentation location

Monarch butterfly populations in North America have declined by approximately 80% over the last 20 years. Many contributing factors are responsible for this decline, however the loss of Milkweed has been identified as a major factor. Milkweed is the primary food source for Monarch caterpillars. A GIS analysis was performed to identify milkweed resources in the North Texas area.

View Presentation

GEOL2019CAVES50910 GEOL

Understanding Metal-Silicate Mixing in Mesosiderites

Type: Graduate
Author(s): Lindsay Caves Geological Sciences
Advisor(s): Rhiannon Mayne Geological Sciences
Location: Session: 1; 1st Floor; Table Number: 5

presentation location

Mesosiderites are meteorites composed of equal parts metal and crustal silicate material, which have been linked to the HED parent body 4Vesta. The metal portion of mesosiderites is also compositionally similar to the IIIAB irons. Mesosiderite silicates were mixed with metal, recrystallized and rapidly cooled. The slow metallographic cooling rates recorded by mesosiderite metal indicate mixing followed by deep burial within an asteroidal body. Several models for the formation of mesosiderites have been proposed, but no single model can completely explain their multi-stage history. Oxygen isotope compositions of mesosiderites and eucrites are identical, consistent with the HEDs and mesosiderites originating from a common parent body. However, there are notable differences between the two groups. These include the differing Fe-Mn-Mg systematics in mesosiderite pyroxenes, which reflect an FeO reduction trend and not the magmatic trend seen in the HEDs. Phosphates and tridymite are also more abundant in mesosiderites than howardites and eucrites. These differences have been attributed to redox reactions that occurred during the metal-silicate mixing stage of mesosiderite formation. As previous work focused mainly on the silicate portion, this study examines the metal of five mesosiderite samples of varying petrologic class and degree of metamorphism. Thick sections of each meteorite containing both matrix metal and metal nodules were requested on loan from the National Meteorite Collection, located in the National Museum of Natural History, Department of Mineral Sciences. Electron microprobe (EMP) analyses of both silicate and metal portions of each mesosiderite were collected, as well as LA-ICP-MS analyses of the matrix metal and metal nodules within each section. The dataset will be analyzed for evidence of redox reactions and other processes that may have been occurring during the metal-silicate mixing phase of mesosiderite formation. If redox reactions occurred between the metal and silicate portions of mesosiderites, then: 1) the matrix metal within mesosiderites may be depleted in readily oxidizable elements (e.g. P, W) relative to the metal nodules that are not in contact with the silicate phase; or, 2) all metal in mesosiderites is depleted in readily oxidizable elements. This depletion should be visible when compared to IIIAB irons of a similar composition.

(Presentation is private)

GEOL2019DEBONE30636 GEOL

Newly discovered old volcano in Big Bend National Park

Type: Graduate
Author(s): Kristin DeBone Geological Sciences Tamie Morgan Geological Sciences
Advisor(s): Richard Hanson Geological Sciences
Location: Session: 2; Basement; Table Number: 8

presentation location

Recent field work has discovered a volcanic complex within the Paleocene Black Peaks Formation in the northwestern part of Big Bend National Park in west Texas. This is the only known Paleocene volcano in west Texas. We have identified pyroclastic deposits consisting of ash-sized and coarser clasts, including volcanic bombs and blocks, which were erupted explosively from a nearby vent. Margins of the volcanic complex have been mapped using remote sensing because the volcanic rocks are distinctly different in color from the adjacent shale. Characteristics of the pyroclastics suggest derivation from phreatomagmatic eruptions, which occurred when magma and groundwater violently interacted in the shallow subsurface.

(Presentation is private)

GEOL2019DONAHOO65357 GEOL

Using Non-Invasive Geophysical Techniques in Near-Surface Infrastructure and Agricultural Planning and Management

Type: Graduate
Author(s): Michaela Donahoo Geological Sciences
Advisor(s): Omar Harvey Geological Sciences
Location: Session: 2; 3rd Floor; Table Number: 7

presentation location

Using Non-Invasive Geophysical Techniques in Near-Surface Infrastructure Planning and Management

Michaela Donahoo1, Karim Ouamer-ali2,3, Youcef Daoud2, Kaddour Djili3, Omar R. Harvey1
1Department of Geological Sciences, Texas Christian University, Fort Worth, Texas, USA.
2 National Institute of Agronomic Research of Algeria (INRAA), El-Harrach, Algeria.
3Ecole Nationale Supérieure Agronomique (ENSA), El-Harrach, Algeria.

Understanding soil characteristic variability geospatially as a function of depth and time is key to the optimal implementation of subsurface infrastructure planning and expansion. The soils physical behavior as well as its interaction with piping and road materials determine where such a system could divert and predict future maintenance frequency. Central to the development of site-specific, precision management strategies is the quantification and mapping of the geospatial variability in soil properties at significantly higher resolutions than provided in current soil surveys. The presentation will cover results from ongoing collaborative research efforts between researchers at Texas Christian University and two Algerian institutions in using non-invasive measurements of bulk apparent electrical conductivity (ECa) to quantify and map 3-D soil variability in semi-arid and arid areas of Algeria, Northern Africa. The focus will be on the derivation and application of depth-specific ECa-ECe (saturated paste), ECa-clay content and ECa-water content relationships for use in understanding seasonal salinity and water dynamics within potential depths of construction interest.

View Presentation

GEOL2019LAMB52985 GEOL

A Source to Sink Analysis of the Dockum Group in the West Texas Highplains

Type: Graduate
Author(s): Grayson Lamb Geological Sciences
Advisor(s): John Holbrook Geological Sciences
Location: Session: 1; 3rd Floor; Table Number: 9

presentation location

The fundamental understanding of any geologic basin stems from ascertaining the relationship between its source and sink. Every basin is therefore identified as a “sink” and has a provisional “source.” The investigation of this fundamental relationship is the preliminary exploration step to further basin development.
The Late Triassic Dockum Group of the west Texas high plains is an understudied group that begs investigation into the source to sink relationship. A comprehensive study of the Dockum Group as a “sink” is here undertaken in order to better understand the paleoclimate and its implications on the Dockum group depositional style. This study focuses on the northern most section of the Dockum group outcrop system. Within the study area it is subdivided into three main formations, the Tecovas mud, Trujillo sand, and Cooper Canyon sand-mud mix system.
This study showcases a forward stratigraphic modeling software, Dionisos Flow. From field based outcrop work: grain size, channel thickness, water discharge, and lithofacies assemblages were quantified as model inputs in Dionisos Flow.
The study aims to model Dockum Group sedimentation in order to determine the plausible paleoclimate, and its related depositional environment and depositional style. To do so, an outcrop study and fluvial architecture analysis was completed to serve as model input variables. Then a forward stratigraphic Dionisos Flow model of the three main Dockum Group formations was generated. It was then analyzed and coupled with the outcrop study to draw conclusions on the necessary Triassic climate conditions to produce the Dockum Group deposits.
Per the modeling exercise and outcrop study it is concluded that the Triassic climate was highly variable, shifting between semi-arid to humid. Its variability has been underemphasized in previous studies. Climate alterations are on a scale of 103 years. Additionally, the Dockum Group’s sedimentation style has been a forum of contradicting theories. This study has concluded that Dockum sands were deposited in a predominantly upper flow regime environment during humid climate cycles, while its abundant muds were deposited in lower flow during semi arid climate cycles.

(Presentation is private)

GEOL2019MIRKIN10373 GEOL

Background Color Matching in Texas Horned Lizards

Type: Graduate
Author(s): Stephen Mirkin Biology
Advisor(s): Tamie Morgan Geological Sciences
Location: Session: 2; Basement; Table Number: 1

presentation location

Texas horned lizards are a threatened species in the state of Texas with declines attributed to a variety of factors including: habitat conversion, pesticide use and red imported fire ants. These cryptic lizards in their natural habitats utilize a variety of anti-predator defense mechanisms. The primary defensive adaptation to avoid predators is often cited as their cryptic coloration, which is often suggested to color match the background substrates of the regions where they are found. Although background color-matching is purported to be an important factor in horned lizard defensive strategies it has never been empirically tested. Here we present the first known study of background color matching of Texas horned lizards in the state of Texas. We used a GIS analysis using soils and satellite imagery data to test how well Texas horned lizards match the soils and substrate in different regions of Texas.

View Presentation

GEOL2019PEREZ40118 GEOL

Area Growth of Fort Worth, Texas in Zip Codes 76131, 76177, 76137, and 76244

Type: Undergraduate
Author(s): Dylan Perez Geological Sciences
Advisor(s): Tamie Morgan Geological Sciences
Location: Session: 2; 3rd Floor; Table Number: 1

presentation location

Over the last 20 years significant growth has occurred in the northern part of Fort Worth, Texas defined by the zip codes 76131, 76137, 76177, and 76244. Using GIS analysis, this project measured the amount of open area lost and the growth of residential and commercial areas.

View Presentation

GEOL2019STIEFFEL51148 GEOL

Evidence for an Old Parana delta and Diachroneity in Global Highstands

Type: Graduate
Author(s): Rodney Stieffel Geological Sciences
Advisor(s): John Holbrook Geological Sciences
Location: Session: 1; 2nd Floor; Table Number: 4

presentation location

The highstand deltas of the Holocene tend to each initiate with the peaking of eustatic sea level rise at about 7000 y.b.p. While generally tied to this time, the initiation of highstand shorelines is not necessarily synchronous. Local impacts on relative sea level can impact this timing. In particular, the Parana Delta, Argentina, appears to have initiated as early as 8100 y.b.p., well before the global sea level peak and potentially before any comparable highstand shorelines. The Parana Delta encompasses an area of ~17,400 km2 enclosed in the Rio de la Plata estuary, growing steadily at a rate of approximately 2 km2 yr-1 for roughly the past 6000 yrs. This deltaic system has shifted from fluvial, to wave-dominated, and then back to its present day fluvial dominated system. Aerial and satellite imagery, shallow boreholes, radiometric dating of shells and sand, and Ground Penetrating Radar are used to define the distinctive sedimentary features of the delta. New data from the upper part of the delta indicates the Parana Delta initiated well before the 6000 y.b.p. previously reported. Sediment cores collected from across the upper delta are used to identify sedimentary facies and construct a stratigraphic framework. Three OSL samples collected from the oldest set of beach ridge s indicate the first ridges formed approximately 8100 years ago. These beach ridges are <3 m above sea level and argue for an early peak in relative sea level. Highstand strata are about 6 m thick above a thin (1-2 m) condensed section above transgressive shoreface deposits. The Parana delta initiated at least 1500 years before the sea level peak. Assumptions of synchronicity of highstands with eustatic sea level accordingly must be tempered with comparable allowance for local error.

View Presentation

GEOL2019TALBERT42796 GEOL

Lower Permian and Pennsylvanian Stratigraphy and Shale Gas Potential of the Palo Duro Basin

Type: Graduate
Author(s): Brendan Talbert Geological Sciences
Advisor(s): Cheyenne Xie Geological Sciences
Location: Session: 2; Basement; Table Number: 11

presentation location

The Palo Duro Basin is a northwest-southeast trending cratonic basin in the Texas Panhandle that formed from uplift of the Amarillo/Wichita Mountains during the Pennsylvanian, and subsequent subsidence during the Permian. Sediments were deposited in a number of environments, the most prominent being fan-delta, carbonate shelf, and deep basin settings. Major lithologies in the Pennsylvanian are granite wash, shelf-margin carbonates, and basinal shales, while the Permian hosts the same lithologies, as well as numerous evaporites and red-bed sequences.
This study analyzes log data from 100+ wells in the Palo Duro Basin to correlate and determine the lateral extent of different facies throughout the basin during the Pennsylvanian and Permian. Cross-sections made will help to generate isopach, structure, and other geological maps to identify areas where further geochemical and/or petrophysical analyses can be performed to evaluate Pennsylvanian and lower Permian shale gas potential of the Palo Duro Basin. This project will establish a more detailed stratigraphic framework of Pennsylvanian and lower Permian aged sediments of the basin, as well as determine source rock quality and thermal maturity for potential shale gas plays within the Palo Duro Basin, with a more thorough look along the southern fringes of the basin near the Matador Arch.

View Presentation

GEOL2019TERRELL64068 GEOL

Pennsylvanian and Mississippian Stratigraphy, Little Hoss Ranch, Johnson County, Fort Worth Basin, Texas

Type: Graduate
Author(s): Aro Terrell Geological Sciences
Advisor(s): Richard Denne Geological Sciences
Location: Session: 1; 2nd Floor; Table Number: 7

presentation location

The primary objective of this study is to test my hypothesis that the stratigraphy within Little Hoss Ranch is very complex and diverse but correlative to the surrounding strata of similar depth and characteristics. The second objective is to identify characteristics of the stratigraphic facies to better aid in the production via recompletion or other determined methods within the Little Hoss area. Seismic data that will be analyzed within Little Hoss Ranch are made available by TEP Barnett. Seismic analysis will be done using Kingdom and will be assisted by the TEP geophysicist when possible. The goal is to use these data to better identify faults and other significant structural features within the area as well as the Barnett Shale stratigraphy for LHR. A map will be made using the seismic data and logs will be included in the map for reference and quality check purposes. The seismic, well log, and cutting data for the LHR that will be analyzed was originally acquired by Chesapeake as early as 2008 and is now owned by TEP, Barnett. 127 well logs will be analyzed using PETRA, within and immediately adjacent to the Little Hoss Ranch area, to better correlate and map the stratigraphy within the Little Hoss Ranch and will be tied to the LHR wells with surrounding wells in Johnson County and Tarrant County to create regional cross-sections. An additional cross-section will be created with the wells to the north in Tarrant County to display structural trends and stratigraphic facies correlation. The 127 LHR wells will be used to create a detailed structure map that can be compared to the seismic time structure map. The BHT will be used from the well logs as well as production data (oil to gas ratio) to determine if differential thermal maturity occurred within the area The overall goal of this project is to analyze the stratigraphy and structure of the Barnett Shale play within the Little Hoss Ranch confines and to identify any geologic effects or geologic solutions to marginal production for the area of study. Seismic data, well-logs, core and cuttings, mud-log descriptions, and background literature research will be used to conduct a thorough investigation into the stratigraphy affecting the LHR. The wells in the LHR will be used with wells in northern parts of the Fort Worth Basin to create a cross section spanning a larger area. This will help to better correlate the stratigraphy for the basin and help identify depositional and erosional changes in the Fort Worth Basin. Additionally, the OGIP data and calculations will be used to help define what the remaining hydrocarbon value is for the Barnett Shale within LHR.

(Presentation is private)

GEOL2019TOTZ51136 GEOL

A GIS Analysis of Crustal Stress Directions and Orientation of Horizontal Drilling in the Permian Basin in West Texas

Type: Undergraduate
Author(s): Samuel Totz Geological Sciences
Advisor(s): Tamie Morgan Geological Sciences Helge Alsleben Geological Sciences
Location: Session: 1; 2nd Floor; Table Number: 6

presentation location

The World Stress Map (WSM) is a global compilation of information on the stress field of the present-day earth crust and is maintained since 2009 at the Helmholtz Center Potsdam GFZ German Research Center for Geosciences. This database uses data from earthquake focal mechanisms, well bore breakouts, drilling induced fractures, and geologic data to generate a map of the stresses in the Earth. Using GIS, the data was mapped and examined for the Permian Basin area of West Texas which is currently one of the largest and most active oil fields in the United States. This database in conjunction with data collected on the direction of horizontal well bores was examined to determine if or how stress directions in the Earth influenced the drilling bore direction. This data was also used to see if there is a correlation between stress direction and a company’s decision to place a well in a certain location or orientation.

(Presentation is private)

GEOL2018ALVAREZ29418 GEOL

Regional Chemostratigraphy and Mechanical Stratigraphy of the Barnett Shale, Fort Worth Basin, Texas

Type: Graduate
Author(s): John Alvarez Geological Sciences
Advisor(s): Helge Alsleben Geological Sciences

Although multiple localized chemostratigraphic and strength studies have been completed on the organic-rich Barnett Shale in the Fort Worth basin (Montgomery et al., 2005; Pollastro et al., 2007; Jarvie et al., 2007; Rowe et al., 2008; Williams et al., 2016; Taylor, 2017; Alsleben, unpublished), basin-wide correlations have not been completed. Basin-wide correlation of chemostratigraphy and mechanical stratigraphy could enhance the understanding of regional variations in chemical composition and rock competence. Therefore, this study is going to test multiple hypotheses to identify regional trends and correlations within the Barnett Shale, based on variations in the formations chemical makeup and rock strength. The purpose is to start establishing a more comprehensive, basin-wide characterization of the mechanical stratigraphy and chemostratigraphic framework of the Barnett Shale in the Fort Worth Basin. Results will start to establish possible regional variations such as rock strength and help determine what controls those variations. Ultimately, the data compilation may provide a better understanding of the Barnett Shale and start to address the complex interactions between marine sediment flux, terrestrial sediment flux, and geochemistry throughout the basin at the time of deposition.

View Presentation

GEOL2018BURNS41328 GEOL

Geomechanical Relationship Between the Maness Shale and Lower Eagle Ford, San Marcos Arch, Texas

Type: Undergraduate
Author(s): Alec Burns Geological Sciences
Advisor(s): Richard Denne Geological Sciences

The geomechanical properties of Eagle Ford cores from the San Marcos Arch were measured by hardness tools to test that calcareous rocks are stiffer than the clay-rich shales. Results were quantified and graphed to reinforce the idea that the Maness shale could be more ductile than the superimposing Eagle Ford Shale.

View Presentation

GEOL2018BURNS56887 GEOL

Facies modeling of the Lower Williams Fork, Piceance Basin, CO

Type: Undergraduate
Author(s): Alec Burns Geological Sciences
Advisor(s): Xiangyang Xie Geological Sciences Tamie Morgan Geological Sciences

Lithology and facies of the Lower Williams Fork in the Piceance Basin, Colorado were interpreted using spectral gamma ray logs on Petrel. Models were created using this correlated data to predict the facies in an area with no well data. Different modeling methods will be used, such as object modeling and sequence indication simulation to compare and search for the best fit. Published outcrop measurements were used to constrain subsurface geobody geometry. Models were also used to estimate reservoir rock potential in the Lower Williams Fork.

View Presentation

GEOL2018DEBONE1535 GEOL

Energetics of Dissolved Organic Matter at the SiO2-Water Interface

Type: Graduate
Author(s): Kristin DeBone Geological Sciences
Advisor(s): Omar Harvey Geological Sciences

Silica oxides (SiO2) come in a variety of forms including quartz, opal, silica gel and phytoliths. This study will focus on the binding and debinding energetics of sodium benzoate, sodium butyrate and sodium acetate on these various silica oxides. The direct measurement and analysis of binding and debinding energies should provide valuable data and insights into the dynamics of organic molecules at the oxide-water interface. The study will focus on the systematic collection and analysis of experimental data that can be used to support the development, validation and refinement of computational models of interactions involving natural organic matter at the metal oxide-water interface, while facilitating the further development of experiment-driven understanding of binding-debinding dynamics of organic molecules onto mineral surfaces.

View Presentation

GEOL2018FUNDERBURG1151 GEOL

Metasomatism in Eucrites

Type: Graduate
Author(s): Rebecca Funderburg Geological Sciences
Advisor(s): Rhiannon Mayne Geological Sciences

METASOMATIC FEATURES IN EUCRITES. R. L. Funderburg1, R. G. Mayne, N. G. Lunning2, and S. Sin-gletary3, 1Monnig Meteorite Collection, 2950 West Bowie Street, SWR 244, Texas Christian University, Fort Worth, TX 76109. (r.funderburg@tcu.edu), 2Department of Mineral Sciences, Smithsonian Institution, National Museum of Natural History, 10th and Constitution NW, Washington, DC 20560-0119. 3Robeson Community College, 5160 Fayetteville Road, Lumberton, NC 28360.

Introduction: The breakdown of pyroxene to silica and troilite was first identified as an alteration process in eucrites by Duke and Silver [1]; however, metasomatism was not iden-tified as a potential cause of these features until the 1990s [2] and has been increasingly identified in the last 10 years [3, 4, 5, 6, 7]. Many eucrite studies were conducted prior to this time and, while metasomatic features may have been identified, they were not attributed to this process.

Barrat et al. [4] proposed a three-stage alteration process to explain the products of metasomatic alteration found in eu-crites:
(1) Fe-enrichments along cracks in pyroxenes
(2) Fe-rich olivine deposits in cracks and troilite
(3) Al-depletion coincident with Fe-enrichment of pyroxene

While metasomatism within eucrites is now commonly identified within the literature, the mechanism for this altera-tion is not well understood. Possible mechanisms proposed in-volve hydrous fluid alteration [4] or sulfurization from a S-rich vapor [6, 7]. The addition of sulfur is required to produce troilite from the breakdown of pyroxene, which has been ob-served in several eucrites [3, 4, 5, 6, 7]. Zhang et al. [5] sug-gested that the sulfur may have been present in the form of a dry S-O-P vapor, formed by the volatilization of pre-existing S- and P-rich material as a result of impacts. Additional petro-logical studies are needed to test if metasomatism was consist-ently driven by S-O-P vapors or if some metasomatism lacks the P-component expected for impact derived vapor.

Metasomatism has been directly investigated for only a handful of eucrites. This study will investigate metasomatism in both Stannern and Main-Group-Nuevo-Laredo (MGNL) eucrites to investigate the com-position of the altering fluid/vapor and overarching processes that drive metasoma-tism on the eucrite parent body. Our preliminary work is fo-cused on the Stannern-trend eucrites Bouvante and LEW 88010, the main group eucrite Béréba, and the polymict eu-crite NWA 4834.

Methods: The samples from this study are on loan from the following: Béréba (USNM 5745-2, USNM 6003-2; Na-tional Meteorite Collection, Smithsonian Institution), Lewis Hills 88010 (LEW 88010) (LEW 88010,4; Meteorite Working Group), Bouvante and Northwest Africa 4834 (NWA 4834) (M1224.3, M1224.5, and M2049.2; Monnig Meteorite Collection). Petrographic analysis was conducted via optical micros-copy with an Olympus BX51 polarizing light microscope at the Oscar Monnig Meteorite Collection at Texas Christian University. Backscatter electron (BSE) maps and major ele-ment data for pyroxenes in Bouvante, LEW 88010, and NWA 4834 were measured by a JEOL JXA-8530F HyperProbe elec-tron microprobe analyzer (EMPA) at Fayetteville State Uni-versity’s Southeastern North Carolina Regional Microanalyti-cal and Imaging Consortium. Backscatter maps were gener-ated for each thin section and energy dispersive x-ray spec-trometry (EDS) point analyses were performed.

Results and Discussion: Of the four samples selected for this study so far, one is unbrecciated (LEW 88010), two are monomict (Béréba and Bouvante), and one is polymict (NWA 4834). These samples were selected as they were observed to contain possible metasomatic features during our petrographic survey, but have not been included in the current literature re-garding metasomatism. They include members of both the Stannern- and MGNL- trends (S: Bouvante and LEW 88010; MGNL: Béréba). All samples are either falls or were observed to show little to no terrestrial alteration. Mineralogically, they are typical eucrites, being dominated by pyroxene and plagio-clase, with lesser phases including troilite, chromite, ilmenite, Fe-rich olivine, and silica.
Preliminary results suggest that Fe-enrichment of pyrox-ene rims, along with an associated Al-depletion, is occurring due to metasomatism in the three samples examined using EMPA. Fe-rich olivine was observed in NWA 4834. Petrographic analysis identified the breakdown of pyroxene into troilite and silica in all four samples.

Future Work: Quantitative pyroxene and plagioclase data for all four samples will be collected prior to the conference. This will allow for further assessment of the Al-depletion along with Fe-enrichment in pyroxenes. We will also investigate the presence of phosphates in these samples to investigate the P-component that would be present in an impact derived vapor. We will assess if there are any differences in metasomatism between MGNL and Stannern-trend eucrites. A survey of previously identified residual eucrites for metasomatic features will also be conducted, so that all three geochemical groupings are represented, if possible.

View Presentation

GEOL2018HARRISON25027 GEOL

Facies Characterization, Architecture Analysis, and Depositional Environment of Cretaceous-Paleogene Coal Beds and Surrouding Strata within the Raton Basin of Colorado and New Mexico, USA

Type: Graduate
Author(s): Ross Harrison Geological Sciences John Holbrook Geological Sciences Sean Horne Geological Sciences
Advisor(s): John Holbrook Geological Sciences

The Raton Basin of Colorado and New Mexico is a Laramide foreland basin that has been important to coal geology since its first identification as a coal resource in 1821, and as a major Coal Bed Methane resource in the modern era. Raton Basin contains Cretaceous to Paleogene strata representative of the major transgression and subsequent regression of the Western Interior Seaway. The interaction between the distal and proximal lithosomes of strata within the Raton Basin is not fully understood. The coaly, fine-grained rocks of the lower and upper coal zones of the Upper Cretaceous to Paleogene Raton Formation are indicative of deposition in wet, distal lowlands, whereas the coarser grains of the barren series of the Raton Formation indicate that this unit was deposited in a highland setting proximal to the source. While the basin has been explored and produced for petroleum and coal in the past (specifically the Cretaceous Vermejo Formation and Raton Formation), vertical and lateral interaction, geometries, and potential communication between the coal deposits and surrounding fluvial deposits is not well-understood. This project has served as an investigation into the depositional model of the coal deposits and their surrounding fluvial deposits, specifically by: analyzing outcrops using architecture analysis, performing core descriptions and interpretations, conducting coal palynology, organic petrology, and chemical analysis. It has been proposed that the Upper Cretaceous to Paleogene strata of the Raton Basin were deposited within a Distributive Fluvial System (DFS), and that the coal-rich zone is the down-dip expression of this system. Initial results (vertical and lateral relation of facies in core and outcrop, organic petrology, and palynology) reveal that the extensive and laterally continuous coals formed in a woody low-lying fluvio-lacustrine depositional environment, and humid subtropical climate.

View Presentation